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SOME RESULTS ON n-STABLE RINGS

Amir M. Rahimi

Abstract. All rings are commutative rings with identity, and J(R) denotes

the Jacobson radical of the ring R. For any fixed integer n ≥ 1, it is shown that

the class of all n-stable rings is properly contained in the class of all n + 1-stable

rings. Results are given showing the connection between several types of rings

whose finite sequences satisfy different stability conditions, some involving J(R).

It is shown that in the strongly n-stable case, it suffices to check whether the n+1-

tuples satisfy the stable condition. In addition to other results and an example of

a ring which is not n-stable for any integer n ≥ 1, examples are given to show the

distinction between the different types of stability cases. Finally, in the last section,

some surjective mapping properties of a generalized form of GLn(R) and SLn(R)

in connection to some stable conditions in the ring R are investigated.

1. Preliminaries. All rings are commutative rings with identity and for any

ring R, J(R) denotes the Jacobson radical of R. R is called a semisimple ring

whenever J(R) = (0). For any integer s ≥ 1, a sequence a1, a2, . . . , as, as+1 of

elements of R is said to be stable provided that the ideal (a1, a2, . . . , as, as+1) =

(a1+b1as+1, . . . , as+bsas+1) for some b1, b2, . . . , bs ∈ R and also a1, a2, . . . , as, as+1

is called a unimodular sequence whenever (a1, a2, . . . , as, as+1) = R. For a fixed

integer n ≥ 1, we shall say R is n-stable, stable for the case n = 1, whenever for

all s ≥ n, any unimodular sequence of size s + 1 is stable. It is clear that any

n-stable ring is also m-stable for any integer m ≥ n. R is a B-ring if for any uni-

modular sequence a1, a2, . . . , as, as+1 with s ≥ 2 and (a1, a2, . . . , as−1) 6⊆ J(R),

there exists b ∈ R such that 1 ∈ (a1, a2, . . . , as + bas+1). R is a strongly

B-ring (SB-ring) provided that for any d, a1, a2, . . . , as, as+1 ∈ R with s ≥ 2,

(a1, a2, . . . as−1) 6⊆ J(R) and d ∈ (a1, a2, . . . , as, as+1), then there exists b ∈ R

such that d ∈ (a1, a2, . . . , as + bas+1). For general information on these subjects,

the reader is referred to [1, 5, 6]. Note that the statement “R is n-stable” is an

epitomized version of “n is in the stable range of R” which Estes and Ohm termed

in [1].

Now for the sake of reference, we state the following proposition which is

Theorem 3.4 in [2].

Proposition 1.1. Any n-dimensional commutative integral domain is n + 1-

stable and if R is an arbitrary n-dimensional commutative ring, then it is n + 2-

stable.
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Remark. Theorem 2.3 in [1], which we state here, provides another type of

dimensional criterion for the stable range in commutative rings. Let, for each ideal

A of R, J(A) denote the intersection of all maximal ideals of R containing A, and

J = {ideals A of R | J(A) = A}. As usual we denote the Krull dimension of R

by dimR and by dimJR, we mean the sup of the length of the chains of prime

ideals in J . Thus, dimJR ≤ dimR. R is called J-Noetherian provided the ideals

of J satisfy the ascending chain condition. Theorem 2.3 in [1] states that R is

n+ 1-stable whenever R is J-Noetherian and dimJR ≤ n. Following the notations

of [1], let, for any ring R and positive integers s ≤ t, M(R, s × t), be the set

of all s × t matrices over R; GL(R, s × t) be the set of all s × t matrices whose

s× s subdeterminants of each generate the unit ideal; and SL(R, s× s) denote the

set of all s × s matrices of determinant 1. Further, the condition s∗ is defined as

follows: for every α ∈ GL(R, 1 × s) there exists M ∈ M(R, s − 1 × s) such that

α×M ∈ SL(R, s× s). Here, α×M is a matrix with the first row α and its bottom

s− 1 rows equal to those of M .

Let K be a field and X1, X2, . . . , Xn be n indeterminates overK. According to

an equivalent of Serres Theorem in [3], K[X1, X2, . . . , Xn] satisfies the s
∗ condition

for all s ≥ 2. For K the field of real numbers, Estes and Ohm in [1] proved that if

pn = X2
1+X2

2+· · ·+X2
n−1 and (X1, X2, . . . , Xn, pn) is stable inK[X1, X2, . . . , Xn],

then K[X1, X2, . . . , Xn] does not satisfy m∗ for all m ≥ n ≥ 2. From this and the

validity of Serres Theorem in [4], we can extend Corollary 8.1 in [1] as follows.

Proposition 1.2. Assume K is the field of real numbers and n ≥ 2. Then

(X1, X2, . . . , Xn, X
2
1 +X2

2 + · · ·+X2
n − 1) is not stable in K[X1, X2, . . . , Xn].

For the construction of the next example the following results are required.

Remark. Later in this paper it is shown that the n-stable property is preserved

under the ring homomorphism. In [9], it is shown that R[X ] can never be stable

for any ring R. Also in [5], it is proved that R[X ] is a SB-ring, consequently, a

member of the class of 2- stable rings, if and only if R is a field.

Example 1.1. For each n ≥ 1 let Sn denote the class of all n-stable rings.

It is clear that S1 is nonempty since any field is stable. Now, by virtue of the

above remark together with Propositions 1.1 and 1.2, it is clear that Sn is properly

contained in Sn+1 for any n ≥ 1. Thus, S1 ⊂ S2 ⊂ S3 ⊂ · · · is an infinite

proper chain. Moreover, let R1 = K be the field of real numbers and Rn =

K[X1, X2, . . . , Xn−1] for n ≥ 2. Hence,
∏

i≥1Ri the direct product of these rings

is not n-stable for any n ≥ 1 since the homomorphic image of an n-stable ring is

again n-stable.

Remark. Since every Noetherian ring is J-Noetherian, Theorem 2.3 in [1] can

also be applied in the argument of the above example instead of Proposition 1.1.
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Next, the concept of n-stable rings, B-rings, and SB-rings in a natural way is

generalized and investigated.

Definition 1.1. For any fixed integers n ≥ 1 and 1 ≤ k ≤ n, a sequence

a1, a2, . . . , as, as+1 of elements of R with s ≥ n is said to be (n, k)-stable if

(a1, a2, . . . , as, as+1) = (a1 + b1as+1, a2 + b2as+1, . . . , ak + bkas+1, ak+1, . . . , as)

for some b1, b2, . . . , bk ∈ R. R is an (n, k)-stable ring if any unimodular sequence

of size larger than n is (n, k)-stable, and it is called a strongly (n, k)-stable ring

whenever any sequence of size larger than n is (n, k)-stable. R is a strongly n-stable

ring if any sequence of size larger than n is stable.

Definition 1.2. For fixed integers n ≥ 2 and 1 ≤ k ≤ n, R is an (n, k)J -

stable ring if for all s ≥ n any unimodular sequence a1, a2, . . . , as, as+1 with

(a1, a2, . . . , as−1) 6⊆ J(R) is (n, k)-stable. R is a strongly (n, k)J -stable ring if

for all s ≥ n and any d, a1, a2, . . . , as, as+1 ∈ R with (a1, a2, . . . , as−1) 6⊆ J(R)

and d ∈ (a1, a2, . . . , as, as+1), then there exist b1, b2, . . . , bk ∈ R such that d ∈

(a1 + b1as+1, . . . , ak + bkas+1, ak+1, . . . , as). For any fixed integer n ≥ 2, R is said

to be nJ -stable whenever for all s ≥ n, any unimodular sequence a1, a2, . . . , as, as+1

with (a1, a2, . . . , as−1) 6⊆ J(R) is stable, and it is called strongly nJ -stable if

for all s ≥ n and any d, a1, a2, . . . , as, as+1 ∈ R with (a1, a2, . . . , as−1) 6⊆ J(R)

and d ∈ (a1, a2, . . . , as, as+1), then there exist b1, b2, . . . , bs ∈ R such that

d ∈ (a1 + b1as+1, . . . , as + bsas+1).

Definition 1.3. For any fixed integers n ≥ 2 and 1 ≤ k ≤ n, a sequence

a1, a2, . . . , as, as+1 of elements of R with s ≥ n, is said to be (n, k̄)-stable provided

that the ideal (a1, a2, . . . , as, as+1) = (a1, a2, . . . , as−k, as−(k−1)+ bkas+1, . . . , as+

b1as+1) for some b1, b2, . . . , bk ∈ R. A ring R is said to be (n, k̄)J -stable if for

all s ≥ n, any unimodular sequence a1, a2, . . . , as, as+1 with (a1, a2, . . . , as−1) 6⊆

J(R) is (n, k̄)-stable. For all s ≥ n and any d, a1, a2, . . . , as, as+1 ∈ R with

(a1, a2, . . . , as−1) 6⊆ J(R), R is said to be a strongly (n, k̄)J -stable ring pro-

vided that d ∈ (a1, a2, . . . , as, as+1) implies d ∈ (a1, a2, . . . , as−k, as−(k−1) +

bkas+1, . . . , as + b1as+1) for some b1, b2, . . . , bk ∈ R.

Remark. It is not difficult to show that any finite sequence of elements of R

with a unit term is always stable in R.

Lemma 1.1. In a ring R, any unimodular sequence a1, a2, . . . , as, as+1 ∈ R is

stable if { a1, a2, . . . , as, as+1 } ∩ J(R) 6= ∅. More precisely, if ai ∈ J(R) for some

1 ≤ i ≤ s, then (a1, . . . , ai−1, ai+as+1, ai+1, . . . , as) = R, and for the case i = s+1,

(a1+as+1, a2, . . . , as) = (a1, a2+as+1, . . . , as) = · · · = (a1, a2, . . . , as+as+1) = R.
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Proof. Without loss of generality, assume a1 ∈ J(R). Now if (a1 +

as+1, a2, . . . , as) 6= R, then there exists a maximal ideal M of R such that

(a1 + as+1, a2, . . . , as) ⊆ M which implies R ⊆ M . This is a contradiction.

The following lemma provides some equivalent criteria for the definitions of

strongly nJ -stable, strongly (n, k)J -stable, and strongly (n, k̄)J - stable rings.

Lemma 1.2. For fixed integers n ≥ 2 and 1 ≤ k ≤ n, the following results are

true.

i) R is strongly nJ -stable if and only if any sequence a1, a2, . . . , as, as+1 with

s ≥ n and (a1, a2, . . . , as−1) 6⊆ J(R) is stable.

ii) R is strongly (n, k)J -stable if and only if any sequence a1, a2, . . . , as, as+1 with

s ≥ n and (a1, a2, . . . , as−1) 6⊆ J(R) is (n, k)-stable.

iii ) R is strongly (n, k̄)J -stable if and only if any sequence a1, a2, . . . , as, as+1

with s ≥ n and (a1, a2, . . . , as−1) 6⊆ J(R) is (n, k̄)-stable.

Proof. We just make an argument for the first part and leave the other

parts to the reader. Suppose a1, a2, . . . , as, as+1 is a sequence in R with

(a1, a2, . . . , as−1) 6⊆ J(R). By the definition, as+1 ∈ (a1, a2, . . . , as, as+1) implies

as+1 ∈ (a1 + b1as+1, . . . , as + bsas+1) for appropriate b1, b2, . . . , bs ∈ R, and this

forces (a1, a2, . . . , as, as+1) ⊆ (a1 + b1as+1, . . . , as + bsas+1).

2. Some Basic Algebraic Properties.

Theorem 2.1.

i) For any fixed integer n ≥ 2, R is n-stable if and only if it is nJ -stable.

ii) For fixed integers n ≥ 2 and 1 ≤ k ≤ n, R is an (n, k)-stable ring if and only

if it is (n, k)J -stable.

iii) For n ≥ 2 and 1 ≤ k ≤ n if R is an (n, k)J -stable ring, then it is (n, k̄)J -stable,

and the converse of the statement is also true for 2 ≤ k ≤ n.

iv) For n ≥ 2 if R is a stable (n, 1̄)J - stable ring, then it is an (n, 1)J -stable ring.

v) For n ≥ 4, 2 ≤ k ≤ n, and k 6= n − 1, R is strongly (n, k)J -stable if and only

if it is strongly (n, k̄)J -stable. For k = 1, the necessary part is also true.

Proof. Apply Lemma 1.1 for the first three parts. The other parts follow

directly from the definition.

Remark. In the next section, it is shown that the class of all strongly 2-stable

rings is properly contained in the class of all strongly 2J -stable rings. Furthermore,

it is also shown that the class of all strongly 2J - stable rings is properly contained

in the class of all 2-stable rings.

Theorem 2.2.
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i) For fixed integers n ≥ 1 and 1 ≤ k ≤ n, R is strongly (n, k)-stable (respectively,

(n, k)-stable) if and only if all (respectively, unimodular) sequences of size n+1

are (n, k)-stable.

ii) For any fixed integer n ≥ 1, R is strongly n-stable (respectively, n-stable) if

and only if any (respectively, unimodular) sequence of size n+ 1 is stable.

iii) For fixed integers n ≥ 2 and 1 ≤ k ≤ n, R is (n, k)J -stable if and only if

any unimodular sequence a1, a2, . . . , an, an+1 with (a1, a2, . . . , an−1) 6⊆ J(R)

is (n, k)-stable.

iv) For n ≥ 3 and 1 ≤ k ≤ n with k 6= n − 1, R is strongly (n, k)J -stable if

and only if any sequence a1, a2, . . . , an, an+1 with (a1, a2, . . . , an−1) 6⊆ J(R) is

(n, k)-stable.

v) For n ≥ 2, R is strongly nJ -stable (respectively, nJ -stable) if and only if all (re-

spectively, unimodular) sequences a1, a2, . . . , an, an+1 with (a1, a2, . . . , an−1) 6⊆

J(R) are stable.

Proof. A proof by induction is given for part (iv), and the other parts are

left to the reader. Note that for the proof of unimodular cases, replace 1 with

an+2 in the following argument and also apply Lemma 1.1 whenever J(R) is in-

volved. Assume a1, a2, . . . , an, an+1, an+2 is a sequence in R with (a1, a2, . . . , an) 6⊆

J(R). Thus, an+2 ∈ (a1, a2, . . . , an, an+1, an+2) implies an+2 =
∑n+2

i=1 aixi =
∑n

i=1aixi+l for some x1, x2, . . . , xn, xn+1, xn+2 ∈ R and l = an+1xn+1+an+2xn+2.

Now an+2 ∈ (a1, a2, . . . , an−1, an, l) and either (a1, a2, . . . , an−1) 6⊆ J(R) or

(a1, a2, . . . , an−1) ⊆ J(R). Here we continue the argument only for the case

(a1, a2, . . . , an−1) ⊆ J(R) and leave the other case to the reader. Thus, in

this case, (a1, a2, . . . , an−2, an) 6⊆ J(R) and for appropriate b1, b2, . . . , bk ∈ R,

an+2 ∈ (a1, a2, . . . , an−1, an, l) = (a1, a2, . . . , an−2, an, an−1, l) which implies that

an+2 ∈ (a1 + b1l, a2 + b2l, . . . , ak + bkl, . . . , an−1, an) ⊆ (a1 + b1xn+2an+2, a2 +

b2xn+2an+2, . . . , ak + bkxn+2an+2, . . . , an, an−1, an+1).

Remark. The argument in the proof of Theorem 1.2 in [8] on B-rings can also

be applied as a non-inductive direct approach for the proof of the above theorem.

From the above results, it is easy to see that R is strongly (n, n)-stable (re-

spectively, (n, n)-stable) if and only if it is strongly n-stable (respectively, n-stable)

for all n ≥ 1. Next, we give a direct proof of this fact in the following theorem.

Theorem 2.3. For any fixed integer n ≥ 1, R is strongly (n, n)-stable (respec-

tively, (n, n)-stable) if and only if it is strongly n-stable (respectively, n-stable).

Proof. Assume R is strongly n-stable and (a1, a2, . . . , as, as+1) with s ≥ n is an

ideal ofR. Thus, as+1 =
∑s+1

i=1aixi =
∑n

i=1aixi+l for some x1, x2, . . . , xs, xs+1 ∈ R
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and l = an+1xn+1 + · · ·+ asxs + as+1xs+1. Hence, for appropriate b1, b2, . . . , bn ∈

R, we have as+1 ∈ (a1 + b1l, . . . , an + bnl) ⊆ (a1 + b1xs+1as+1, . . . , an +

bnxs+1as+1, an+1 + 0as+1, . . . , as + 0as+1) which easily implies the result.

Remark. From the above result and Theorem 2.1, it is clear that for all n ≥ 2,

R is (n, n)J -stable if and only if it is nJ -stable.

For the sake of reference, regardless of all possible equivalent stability cases,

the following theorem will be stated for all rings that are defined in Definitions 1.1

through 1.3 above.

Theorem 2.4. Let A ⊆ J(R) be an ideal of R.

i) For fixed integers n ≥ 1 and 1 ≤ k ≤ n, R is (n, k)-stable (respectively, n-

stable) if and only if R/A is (n, k)-stable (respectively, n-stable). Further, the

necessary part is always true for any ideal A of R.

ii) For n ≥ 1 and 1 ≤ k ≤ n, the homomorphic image of a strongly (n, k)-

stable (respectively, strongly n-stable) ring is again a strongly (n, k)-stable

(respectively, strongly n-stable) ring.

iii) For n ≥ 2 and 1 ≤ k ≤ n, R is (n, k)J -stable (respectively, (n, k̄)J -stable,

nJ -stable) if and only if R/A is (n, k)J -stable (respectively, (n, k̄)J -stable, nJ -

stable). The necessary part is always true for any ideal A of R.

iv) Let n ≥ 2 and 1 ≤ k ≤ n be fixed integers, then the homomorphic image of a

strongly (n, k)J - stable (respectively, strongly (n, k̄J -stable, strongly nJ -stable)

ring is a strongly (n, k)J -stable (respectively, strongly (n, k̄)J -stable, strongly

nJ -stable).

v) Let {Ri |i ∈ I } be a family of rings. For fixed integers n ≥ 1 and 1 ≤

k ≤ n, the direct product
∏

i∈IRi is strongly (n, k)-stable (respectively, (n, k)-

stable, n-stable, strongly n-stable) if and only if Ri is strongly (n, k)-stable

(respectively, (n, k)-stable, n-stable, strongly n-stable) for each i ∈ I. Also,

for n ≥ 2 and 1 ≤ k ≤ n,
∏

i∈IRi is (n, k)J -stable (respectively, (n, k̄)J -

stable, nJ -stable) if and only if each factor of the product is (n, k)J -stable

(respectively, (n, k̄)J -stable, nJ -stable).

vi) Let {Ri | i ∈ I } be a family of semisimple rings. For fixed integers n ≥ 2 and

1 ≤ k ≤ n, the direct product
∏

i∈IRi is strongly (n, k)J -stable (respectively,

strongly nJ -stable) if and only if each factor of the product is a strongly (n, k)J -

stable (respectively, strongly nJ -stable), and also the result holds for strongly

(n, k̄)J -stable rings whenever 2 ≤ k ≤ n.

Proof. Follow the definitions, use Lemmas 1.1 and 1.2, and apply the technique

which is given in the Proof of Theorem 2.2 above.
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Remark. In the next section, it is shown that the product of two strongly

2J -stable rings is not always a strongly 2J -stable ring.

3. Some Examples and Applications. Besides some other results in [9],

it is shown that R[X ] can never be stable and Artinian rings are always stable. In

[7], it is proved that a formal power series with any number of indeterminates over

a ring R is n-stable if and only if R is n-stable. See [8] for some improved results

on B-rings, and also see Example 1.1 above. Finally in [10], as an application of

SB-rings, it is shown that R[X ] can never be a Prüfer domain whenever R is a

non-field Noetherian integral domain.

Next, we study the stability conditions of Zm[X ]. A ring R is completely

primary if each element of R is either a unit or a nilpotent. By Theorem 2.7

(respectively, Theorem 3.4) in [5], R[X ] is a B-ring (respectively, SB-ring) if and

only if R is a completely primary ring (respectively, a field). Note that every B-ring

is 2-stable and every SB-ring is strongly 2J -stable. Now from this and Theorem 2.4

above, we state the following example.

Example 3.1. For any integer m = pt11 pt22 · · · ptkk with p1, p2, . . . , pk distinct

primes and each of t1, t2, . . . , tk a positive integer,

Zm[X ] = Z
p
t1

1

[X ]× Z
p
t2

2

[X ]× · · · × Z
p
t
k

k

[X ]

is

i) a 2-stable ring which is not a B-ring whenever k ≥ 2, or

ii) a B-ring which is not a SB-ring whenever k = 1 and t1 ≥ 2, or

iii) a SB-ring whenever k = 1 and t1 = 1.

Remark. As an alternative approach to the validity of the above example, for

any positive integer m which is not a power of a prime number and the fact that

Zm[X ] is a J-Noetherian ring since it is a Noetherian ring, we can apply Theorem 2.7

in [5], and Theorem 2.3 in [1], which is stated in the remark following Proposition

1.1 above together with dimR + 1 ≤ dimR[X ] ≤ 2dimR + 1, to conclude that

Zm[X ] is a 2-stable ring which is not a B-ring.

The ring S in the following example, which is given by Dr. Marion E. Moore,

provides an example of a 2-stable ring which is not a strongly 2J -stable ring.

Example 3.2. Let R be the collection of all elements of the form aα + bβ +

cγ + d with a, b, c, d ∈ Z2 where α, β, and γ satisfy the relations α2 = β2 =

γ2 = αβ = βα = αγ = γα = βγ = γβ = 0 and S = R × R. Note that since
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S is a finite ring, then by Theorem 2.2 in [5] it is a B-ring and consequently a

2-stable ring. Now we show that S cannot be a strongly 2J -stable ring. Clearly,

(0, β) ∈ ((1, γ), (0, α), (0, β)) and (1, γ) /∈ J(S) since (1, 1) − (1, γ) = (0, 1 − γ) is

not a unit in S. Suppose that (0, β) ∈ ((1, γ) + (r, s)(0, β), (0, α) + (t, u)(0, β)) for

some (r, s), (t, u) ∈ S where r = r0 + r1α + r2β + r3γ, s = s0 + s1α + s2β + s3γ,

t = t0+t1α+t2β+t3γ, and u = u0+u1α+u2β+u3γ. Thus, β = (γ+sβ)f+(α+uβ)g

for some f and g in R where f = f0+f1α+f2β+f3γ and g = g0+g1α+g2β+g3γ.

Consequently, β = (γ + sβ)f + (α + uβ)g = f0γ + s0f0β + g0α + u0g0β = g0α +

(s0f0 + u0g0)β + f0γ which implies f0 = g0 = 0 and s0f0 + u0g0 = 1. Therefore,

0 = 1 which is a contradiction.

Example 3.3. Since R in the above example is a completely primary ring with

nilpotent elements 0, α, β, γ, α+ β, α+ γ, β+ γ, and α+ β+ γ, then by Theorem

2.7 in [5], R[X ] is a B-ring and S[X ], S = R ×R is not a B-ring. Now since every

B-ring is a 2-stable ring and the homomorphic image of a strongly 2J -stable ring

is a strongly 2J–stable ring, then by applying Theorem 2.4 and Example 3.2, it is

clear that S[X ] ≃ R[X ] × R[X ] is a 2-stable ring which is neither a B-ring nor a

strongly 2J -stable ring. Further, it is easy to show directly from the definition that

every local ring, a ring with a unique maximal ideal, is a SB-ring. Consequently

since every SB-ring is a strongly 2J -stable ring, then S = R × R shows that the

direct product of two strongly 2J -stable rings need not be a strongly 2J -stable ring.

From this and the result in Theorem 2.4 that the product of strongly n-stable rings

is again a strongly n-stable ring, we can conclude that the class of all strongly 2-

stable rings is properly contained in the class of all strongly 2J -stable rings. Note

that also from the above argument, it is easy to see that R is a SB-ring which is

not a strongly 2-stable ring.

Example 3.4. Every Boolean ring, a ring in which every element is an idempo-

tent, is stable. Assume (a, b) is a unimodular ideal of a Boolean ring R. Thus, for

some appropriate elements x, y ∈ R, 1 = ax+ by. The result follows by multiplying

both sides of this equation by 1− a.

In the rest of this section we generalize some results of Section 8 in [1], namely,

the necessary part of Proposition 8.2, the paragraph above Corollary 8.3, and the

necessary part of Corollary 8.3.

Notation. Let t and s be two positive integers with t ≥ s ≥ 2 and let d, a ∈ R

with a not a unit in R, π: R → R/(a) the canonical epimorphism, GLd(R, s−1×t) =

{M ∈ M(R, s − 1 × t) | d is in the ideal generated by the determinants of all

s−1×s−1 submatrices ofM }, SLd(R, s×s) = {M ∈ M(R, s×s) | the determinant

of M is equal to d }.
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Theorem 3.1. If SLd(R, s × s) → SLπ(d)(R/(a), s × s) is surjective, then

GLd(R, s− 1×s) → GLπ(d)(R/(a), s− 1×s) is surjective.

Proof. Let M ′ ∈ GLπ(d)(R/(a), s − 1 × s), then there exists α′ ∈ M(R/

(a), 1 × s) such that π(d) is equal to the determinant of α′×M ′ or equivalently

α′×M ′ ∈ SLπ(d)(R/(a), s×s). Now, by hypothesis, we can lift α′×M ′ to α×M .

Since the determinant of α×M is equal to d, thenM is a member of GLd(R, s−1×s)

and the proof is complete.

Note that Theorem 3.1 is a general form of the necessary part of Proposition

8.2 in [1]. We state this result below.

Corollary 3.1. If SL(R, s×s) → SL(R/(a), s×s) is surjective, then GL(R, s−

1× s) → GL(R/(a), s− 1× s) is surjective.

Proof. Apply Theorem 3.1 with d = 1.

We next generalize the result of the paragraph preceding Corollary 8.3 in [1].

Theorem 3.2. GLd(R, 1×s) → GLπ(d)(R/(a), 1×s) is surjective if and only if

for every ideal (a1, a2, . . . , as, a) of R containing d, there exist b1, b2, . . . , bs ∈ R

such that d ∈ (a1 + b1a, . . . , as + bsa).

Proof. For the necessary part let d ∈ (a1, a2, . . . , as, a), then π(d) ∈

(a′1, a
′
2, . . . , a

′
s) where a′i = ai + (a) for 1 ≤ i ≤ s. Thus, (a′1, a

′
2, . . . , a

′
s) ∈

GLπ(d)(R/(a), 1 × s). Hence, by hypothesis, there exists (α1, α2, . . . , αs) ∈

GLd(R, 1×s) such that (α1, α2, . . . , αs) 7→ (α′
1, α

′
2, . . . , α

′
s). Thus, π(αi) = αi +

(a) = ai + (a) which implies αi = ai + bia for 1 ≤ i ≤ s and d ∈ (α1, α2, . . . , αs) =

(a1 + b1a, a2 + b2a, . . . , as + bsa). For the sufficiency if (a′1, a
′
2, . . . , a

′
s) is a member

of GLπ(d)(R/(a), 1×s), then π(d) ∈ (a′1, a
′
2, . . . , a

′
s). Hence, π(d) =

∑s

i=1α
′
ia

′
i with

α′
i ∈ R/(a). Thus, d + (a) =

∑s

i=1αiai + (a) which implies d ∈ (a1, a2, . . . , as, a).

By hypothesis, d ∈ (a1 + b1a, a2 + b2a, . . . , as + bsa) for some b1, b2, . . . , bs ∈ R.

Hence, (a1 + b1a, a2 + b2a, . . . , as + bsa) is a member of GLd(R, 1 × s) and

(a1 + b1a, a2 + b2a, . . . , as + bsa) 7→ (a′1, a
′
2, . . . , a

′
s).

Corollary 3.2. GL(R, 1× s) → GL(R/(a), 1× s) is surjective if and only if any

unimodular sequence (a1, a2, . . . , as, a) is stable.

Proof. Apply Theorem 3.2 with d = 1.

Theorem 3.3. For s ≥ 2, GL(R, 1× s) → GL(R/(a), 1× s) is surjective if and

only if any unimodular sequence (a1, a2, . . . , as, a) in R with (a1, a2, . . . , as−1) 6⊆

J(R) is stable.
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Proof. The necessary part can be obtained from the necessary part of Corollary

3.2. For the sufficiency let (a′1, a
′
2, . . . , a

′
s) be a member of GL(R/(a), 1 × s). If

(a′1, a
′
2, . . . , a

′
s) = R/(a), then there exists 1 ≤ i ≤ s such that a′i /∈ J(R/(a)).

Without loss of generality, we can assume i 6= s. Thus, (a′1, a
′
2, . . . , a

′
s−1) 6⊆ J(R/

(a)). So, (a1, a2, . . . , as−1) 6⊆ J(R) where a′i = ai + (a) for 1 ≤ i ≤ s. If ri 7→ r′i,

then 1 + (a) =
∑s

i=1r
′
ia

′
i =

∑s

i=1riai + (a) which implies 1 ∈ (a1, a2, . . . , as, a).

Hence, by hypothesis, there exist b1, b2, . . . , bs ∈ R such that 1 ∈ (a1 + b1a, a2 +

b2a, . . . , as + bsa) ∈ GL(R, 1× s) and the proof is complete.

Theorem 3.4. Let d ∈ R. If SLd(R, 2×2) → SLπ(d)(R/(a), 2×2) is surjective,

then for any ideal (a1, a2, a) of R containing d there exist b1, b2 ∈ R such that

d ∈ (a1 + b1a, a2 + b2a).

Proof. Apply Theorem 3.1 and Theorem 3.2.

Corollary 3.3. If SLa(R, 2× 2) → SLπ(a)(R/(a), 2× 2) is surjective, then any

sequence (a1, a2, a) with a1, a2, a ∈ R is stable.

Proof. See Theorem 3.4.
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