SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
137. [2002, 210] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

Find all non-negative integers a, b, and c such that $a+b+c$ and $a b c$ are consecutive integers.

Solution by Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri. Assume without loss of generality that $a \leq b \leq c$. If $2 \leq a \leq b \leq c$, then writing $b=a+m, c=a+n$ and $a b c=a+b+c+1$ implies

$$
a^{3}+(m+n) a^{2}+a m n=3 a+m+n+1 .
$$

This is a contradiction as the left-hand side is larger than the right-hand side when $a \geq 2$ and m and n are positive integers. We get a similar contradiction when we write $a b c=a+b+c-1$. It follows that a has to be either 0 or 1 .

Case I. If $a=0$, then $a b c=a+b+c+1$ gives a contradiction. But $a b c+1=$ $a+b+c$ implies $1=b+c$ which implies $b=0$ and $c=1$. So the solution in this case is $a=b=0$ and $c=1$.

Case II. If $a=1$, then either $b c=b+c+2$ or $b c=b+c$.
(i) If $b c=b+c$, then $b=b / c+1$ and so we must have $b=c$. This implies that $b=2$ and $c=2$.
(ii) If $b c=b+c+2$, then $b=(b+2) / c+1$. This implies that $b+2=c$. By substitution, $b(b+2)=2 b+4$ or $b^{2}=4$ and so $b=2$ and $c=4$.

The solutions are $(0,0,1),(1,2,2)$, and $(1,2,4)$.
Also solved by J. D. Chow, Edinburg, Texas; Joe Howard, Portales, New Mexico; James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri; and the proposer.
138. [2002, 210] Proposed by Joe Howard, Portales, New Mexico.

Suppose an acute triangle $A B C$ has inradius r and area \triangle. Prove

$$
\cot A+\cot B+\cot C \geq \frac{\triangle}{3 r^{2}}
$$

Solution I by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain. From the Law of Cosines and Sines, we have the cyclic identities

$$
\cot A=\frac{\cos A}{\sin A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c \sin A}=\frac{R}{a b c}\left(b^{2}+c^{2}-a^{2}\right)
$$

where R is the circumradius. We must show

$$
\begin{gathered}
\cot A+\cot B+\cot C \\
=\frac{R}{a b c}\left[\left(b^{2}+c^{2}-a^{2}\right)+\left(c^{2}+a^{2}-b^{2}\right)+\left(a^{2}+b^{2}-c^{2}\right)\right] \geq \frac{\triangle}{3 r^{2}}
\end{gathered}
$$

or

$$
\begin{equation*}
3\left(a^{2}+b^{2}+c^{2}\right) \geq \frac{\triangle a b c}{R r^{2}} \tag{1}
\end{equation*}
$$

Taking into account that

$$
R=\frac{a b c}{4 \triangle} \text { and } \triangle=s r
$$

where s is the semiperimeter, inequality (1) becomes

$$
\begin{equation*}
3\left(a^{2}+b^{2}+c^{2}\right) \geq(a+b+c)^{2} \tag{2}
\end{equation*}
$$

Finally, we need to prove (2). In fact,

$$
\begin{gathered}
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \\
\leq a^{2}+b^{2}+c^{2}+\left(a^{2}+b^{2}\right)+\left(b^{2}+c^{2}\right)+\left(c^{2}+a^{2}\right)=3\left(a^{2}+b^{2}+c^{2}\right)
\end{gathered}
$$

Note that equality holds for an equilateral triangle. This completes the proof.

Solution II by James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri. Assume sides a, b, c are opposite angles A, B, C, respectively. Let h_{a}, h_{b}, h_{c} be the altitudes on sides a, b, c, respectively. Since $A B C$ is an acute triangle,

$$
\frac{a}{h_{a}}=\cot B+\cot C, \quad \frac{b}{h_{b}}=\cot A+\cot C, \quad \text { and } \frac{c}{h_{c}}=\cot A+\cot B
$$

Thus,

$$
\begin{aligned}
\cot A+\cot B+\cot C & =\frac{1}{2}\left(\frac{a}{h_{a}}+\frac{b}{h_{b}}+\frac{c}{h_{c}}\right) \\
& =\frac{1}{2}\left(\frac{a}{\frac{2 \triangle}{a}}+\frac{b}{\frac{2 \triangle}{b}}+\frac{c}{\frac{2 \triangle}{c}}\right) \\
& =\frac{a^{2}+b^{2}+c^{2}}{4 \triangle}
\end{aligned}
$$

The inequality $(a-b)^{2}+(a-c)^{2}+(b-c)^{2} \geq 0$ can be used to derive the inequality

$$
a^{2}+b^{2}+c^{2} \geq \frac{(a+b+c)^{2}}{3}
$$

It can also be shown that $\triangle=s r$, where s is the semiperimeter of the triangle. Applying these above gives

$$
\cot A+\cot B+\cot C=\frac{a^{2}+b^{2}+c^{2}}{4 \triangle} \geq \frac{(a+b+c)^{2}}{12 \triangle}=\frac{(2 s)^{2}}{12 s r}=\frac{s}{3 r}=\frac{s r}{3 r^{2}}=\frac{\triangle}{3 r^{2}}
$$

This completes the proof.

Solution III by Mangho Ahuja, Southeast Missouri State University, Cape Girardeau, Missouri. Let E denote the expression

$$
E=\cot A+\cot B+\cot C
$$

Then,

$$
E=\frac{2 b c \cos A}{2 b c \sin A}+\frac{2 c a \cos B}{2 c a \sin B}+\frac{2 a b \cos C}{2 a b \sin C}
$$

Let s denote the semiperimeter of the triangle $A B C$. We will use the identities

$$
\triangle=\frac{1}{2} a b \sin C, \quad b^{2}+c^{2}-a^{2}=2 b c \cos A, \quad \text { and } \quad \triangle=r s
$$

Then,

$$
E=\frac{1}{4 \triangle}\left[\left(b^{2}+c^{2}-a^{2}\right)+\left(c^{2}+a^{2}-b^{2}\right)+\left(a^{2}+b^{2}-c^{2}\right)\right]=\frac{1}{4 \triangle}\left(a^{2}+b^{2}+c^{2}\right) .
$$

Using

$$
\sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \geq \frac{a+b+c}{3}
$$

we get

$$
E \geq \frac{1}{4 \triangle} \cdot \frac{(a+b+c)^{2}}{3}=\frac{1}{4 \triangle} \cdot \frac{4 s^{2}}{3}=\frac{\triangle}{3 r^{2}}
$$

Solution IV by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan. In [1], the following two lemmas are proved.

Lemma 1. In any triangle the following indentity holds.

$$
\cot A+\cot B+\cot C=\frac{s^{2}-r(4 R+r)}{2 s r} .
$$

Here s is the semiperimeter and R is the circumradius.
Lemma 2. In any triangle the following inequality holds.

$$
s^{2} \geq 3 r^{2}+12 R r .
$$

The inequality we wish to prove now reads

$$
\frac{s^{2}-r(4 R+r)}{2 s r} \geq \frac{\triangle}{3 r^{2}}=\frac{s r}{3 r^{2}}
$$

since $\triangle=s r$. But this inequality is equalivalent to

$$
3\left[s^{2}-r(4 R+r)\right] \geq 2 s^{2}
$$

which is equivalent to

$$
s^{2} \geq 3 r^{2}+12 R r
$$

This last inequality holds according to Lemma 2. This completes the proof.
Observation. The above inequality holds in any triangle (not necessarily an acute one).
Reference

1. Constantin C. Florea, Abordave globala a geometriei triunghiului cu implicatii creative.

Also solved by J. D. Chow, Edinburg, Texas; Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri; and the proposer.
139. [2002, 210] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let F_{n} denote the nth Fibonacci number $\left(F_{0}=0, F_{1}=1\right.$, and $F_{n}=F_{n-1}+$ F_{n-2} for $n \geq 2$) and let L_{n} denote the nth Lucas number ($L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$). Show that

$$
\sum_{k=1}^{n} L_{k}^{3}=\frac{1}{2}\left(F_{3 n+3}+F_{3 n+1}+12(-1)^{n} F_{n}+6(-1)^{n-1} F_{n-1}+3\right)
$$

Solution by James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri. Let

$$
\alpha=\frac{1+\sqrt{5}}{2} \text { and } \beta=\frac{1-\sqrt{5}}{2} .
$$

It is known that the nth Fibonacci number can be represented as

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

and the nth Lucas number can be represented as

$$
L_{n}=\alpha^{n}+\beta^{n} .
$$

These representations can be used to prove the following identities:

$$
\begin{aligned}
& L_{n-1}=F_{n}+F_{n-2}, \\
& \sum_{k=1}^{n}(-1)^{k} L_{k}=(-1)^{n} L_{n-1}+1, \\
& 2 \cdot \sum_{k=1}^{n} L_{3 k}=L_{3 n+2}-L_{2}=L_{3 n+2}-3 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{k=1}^{n} L_{k}^{3} & =\sum_{k=1}^{n}\left(\alpha^{k}+\beta^{k}\right)^{3} \\
& =\sum_{k=1}^{n}\left(\alpha^{3 k}+3 \alpha^{2 k} \beta^{k}+3 \alpha^{k} \beta^{2 k}+\beta^{3 k}\right) \\
& =\sum_{k=1}^{n}\left(\alpha^{3 k}+\beta^{3 k}+3 \alpha^{k} \beta^{k}\left(\alpha^{k}+\beta^{k}\right)\right) \\
& =\sum_{k=1}^{n}\left(\alpha^{3 k}+\beta^{3 k}+3(-1)^{k}\left(\alpha^{k}+\beta^{k}\right)\right) \\
& =\sum_{k=1}^{n}\left(L_{3 k}+3(-1)^{k} L_{k}\right)=\sum_{k=1}^{n} L_{3 k}+3 \sum_{k=1}^{n}(-1)^{k} L_{k} \\
& =\frac{L_{3 n+2}}{2}-\frac{3}{2}+\frac{6}{2}\left((-1)^{n} L_{n-1}+1\right) \\
& =\frac{1}{2}\left(L_{3 n+2}+6(-1)^{n} L_{n-1}+6-3\right) \\
& =\frac{1}{2}\left(F_{3 n+3}+F_{3 n+1}+6(-1)^{n}\left(F_{n}+F_{n-2}\right)+3\right) \\
& =\frac{1}{2}\left(F_{3 n+3}+F_{3 n+1}+6(-1)^{n}\left(F_{n}+F_{n}-F_{n-1}\right)+3\right) \\
& =\frac{1}{2}\left(F_{3 n+3}+F_{3 n+1}+6(-1)^{n}\left(2 F_{n}+F_{n-1}\right)+3\right) \\
& \left.+12(-1)^{n} F_{n}+6(-1)^{n-1} F_{n-1}+3\right) \\
& =1
\end{aligned}
$$

This completes the proof.

Note. The proposer notes that

$$
\sum_{k=1}^{n} F_{k}^{3}=\frac{1}{10} F_{3 n+2}+\frac{3}{5}(-1)^{n-1} F_{n-1}+\frac{1}{2}
$$

was a problem in [1].

Reference

1. C. Cooper and R. Kennedy, "Problem 3," Missouri Journal of Mathematical Sciences, 0 (1988), 29.

Also solved by Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri; Joe Howard, Portales, New Mexico; Don Redmond, Southern Illinois University at Carbondale, Carbondale, Illinois; Kenneth B. Davenport, Frackville, Pennsylvania; and the proposer.
140. [2002, 211] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

The numbers a, b and c are in geometric progression if and only if

$$
(a b+b c+c a)^{3}=a b c(a+b+c)^{3}
$$

Prove this.
Solution by Mangho Ahuja, Southeast Missouri State University, Cape Girardeau, Missouri. Let E denote the expression

$$
E=a b c(a+b+c)^{3}-(a b+b c+c a)^{3}
$$

If we substitute $b^{2}=a c$ in E, the expression reduces to zero, hence E has a factor $\left(b^{2}-a c\right)$. But since E is symmetric in $a, b, c ; E$ must have the other two factors $\left(c^{2}-a b\right)$ and $\left(a^{2}-b c\right)$ as well. Thus,

$$
E=\left(b^{2}-a c\right)\left(c^{2}-a b\right)\left(a^{2}-b c\right) k
$$

On comparing the powers of the polynomial expressions on both sides of this equation, we conclude that k must be a constant. On comparing (on both sides) the coefficients of one of the terms, say $a^{4} b c$, we see that k must be 1 .

We have thus established that

$$
E=\left(b^{2}-a c\right)\left(c^{2}-a b\right)\left(a^{2}-b c\right)
$$

It follows that $E=0$ if and only if one of the three factors is zero, which means the three numbers a, b, c are in geometric progression.

Also solved by James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri; J. D. Chow, Edinburg, Texas; Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri; Joe Howard, Portales, New Mexico; and the proposer.

