FUN WITH THE $\sigma(\mathbf{n})$ FUNCTION

Andrew Feist

1. Notation (Standard and Otherwise). The function $\sigma(n)$ is one of the basic number-theoretic arithmetic functions. It is defined as:

$$
\sigma(n)=\sum_{d \mid n} d
$$

Some values of $\sigma(n)$ for small n can be found in [2, sequence A000203]. (Note: It is known that $\sigma(n)$ is also multiplicative, i.e., if j and k have no factors in common other than 1, $\sigma(j k)=\sigma(j) \sigma(k)$.) The Dirichlet convolution of two arithmetic functions $f(n)$ and $g(n)$, itself a function of n, is defined as follows.

$$
f * g=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

We will use \perp to denote relative primality.
2. Sigma-Primes. A number n is called sigma-prime if and only if $n \perp \sigma(n)$. The sigma-prime numbers below 100 can be found in [2, sequence A014567]. Two rather straightforward theorems are the following.

Theorem 1. All powers of primes are sigma-prime.
Theorem 2. No perfect numbers are sigma-prime.
To build this theory, we shall, in the time-honored tradition of mathematics, start with the simple examples and move up. If a number n is the product of two primes, say p and q, then $\sigma(n)=1+p+q+p q=\sigma(p) \sigma(q)$. Now, the only divisors of $p q$ are p and q. Clearly, $p \perp \sigma(p)$. Thus, $p \perp \sigma(p q)$ if and only if $p \perp \sigma(q)$. Similarly, $q \perp \sigma(p q)$ if and only if $q \perp \sigma(p)$. Assuming $p<q$, we can see that (unless $p=2$ and $q=3$), $p+1<q$ and from that $p+1 \perp q$. Note also that in the case of the above exception, $q+1 \not \perp p$. Thus, we can generalize and say that $n=p q$ is sigma-prime if and only if $q+1 \perp p$. This easily extends to the following theorem.

Theorem 3. If $n=p_{1} p_{2} \cdots p_{k}$, where $p_{1}<p_{2}<\cdots<p_{k}$, and each of p_{1}, \ldots, p_{k} is a prime, then n is sigma-prime if and only if $p_{i} \perp 1+p_{j}$ whenever $i<j$.

This also leads to the following corollary.
Corollary 1. If k is odd and greater than 1 , then $2 k$ is not sigma-prime.
Proof. Since k is odd, it has at least one odd prime factor p; thus, $2 k$ has 2 and p for prime factors. But, $2 \not \perp 1+p$.

Now we come to the cases where n has prime powers as factors. Thus, if $n=\prod_{i} p_{i}{ }^{e_{i}}$, then $\sigma(n)=\prod_{i} \sigma\left(p_{i}{ }^{e_{i}}\right)$. Then if n is to be sigma-prime, each of the factors of the first product must be relatively prime to each of the factors of the second product. Unfortunately, the trick we used in the single-power case will not work here; $p_{i}<p_{j}$ will not imply that $p_{i}{ }^{e_{i}}<p_{j}{ }^{e_{j}}$.

Theorem 4. A number $n=\prod_{i} p_{i}{ }^{e_{i}}$ is sigma-prime if and only if for every i, j,

$$
p_{i} \perp \sum_{k=0}^{e_{j}} p_{j}{ }^{k} .
$$

We close this section with a surprising theorem and a conjecture.
Theorem 5. The square of an even perfect number is sigma-prime.
Proof. According to a famous result of Euler, every even perfect number is of the form $\left(2^{p-1}\left(2^{p}-1\right)\right)$, where $2^{p}-1$ is prime. Thus, the square of an even perfect number is of the form $\left(2^{2 p-2}\left(2^{p}-1\right)^{2}\right)$, where 2 and $2^{p}-1$ are its prime factors. Thus, we have two things to check: (1) $2 \perp 1+\left(2^{p}-1\right)+\left(2^{2 p}-2^{p+1}+1\right)=2^{2 p}-2^{p+1}+2^{p}+1$. This is obvious, as the left-hand side is 2 and the right-hand side is odd; and (2) $2^{p}-1 \perp 1+2+2^{2}+\cdots+2^{2 p-2}=2^{2 p-1}-1$. We will prove this by contradiction. Assume that, in fact, $2^{p}-1 \mid 2^{2 p-1}-1$. We know that $2^{p}-1 \mid\left(2^{p}-1\right)^{2}=2^{2 p}-2^{p+1}+1$. By our assumption, we also know that $2^{p}-1 \mid 2^{2 p}-2$ (by multiplying the right-hand side by 2). Then $2^{p}-1$ must divide the (absolute) difference of these two numbers, which is $2^{p+1}-3$. But this is $2\left(2^{p}-1\right)-1$, and this implies that $2^{p}-1 \mid 1$. This is a contradiction (as $2^{p}-1 \geq 3$), and the theorem is proved.

Conjecture. The natural density of the set of sigma-prime numbers is zero.
This seems a reasonable conjecture to make; the set of prime powers has density zero and the set of sigma-prime numbers is not much larger. However, no proof has been forthcoming.
3. Dirichlet Inverse of $\sigma(\mathbf{n})$. To discuss an inverse, we must first have an identity. Looking at the definition of Dirichlet convolution, after a little thought we see that the value of the identity function must be one at $n=1$ and zero elsewhere.

This tells us immediately that $\sigma^{-1}(1)=1 / \sigma(1)=1$. It has been shown that the inverse of a multiplicative function is itself multiplicative (for a proof, see [1]), so we need only concern ourselves with the prime powers.

Theorem 6. $\sigma^{-1}(p)=-p-1$, where p is a prime.
Proof. Since $p>1$, the identity value under Dirichlet convolution has the value 0 at p. Then, $0=\sigma(p) \sigma^{-1}(1)+\sigma(1) \sigma^{-1}(p)=(p+1)+\sigma^{-1}(p)$, and therefore, $\sigma^{-1}(p)=-p-1$.

Theorem 7. $\sigma^{-1}\left(p^{2}\right)=p$, where p is a prime.
Proof. Again, the identity value is 0 . Then,

$$
\begin{aligned}
0 & =\sigma\left(p^{2}\right) \sigma^{-1}(1)+\sigma(p) \sigma^{-1}(p)+\sigma(1) \sigma^{-1}\left(p^{2}\right) \\
& =\left(1+p+p^{2}\right)+(p+1)(-p-1)+\sigma^{-1}\left(p^{2}\right) \\
& =p^{2}+p+1-p^{2}-2 p-1+\sigma^{-1}\left(p^{2}\right) \\
& =-p+\sigma^{-1}\left(p^{2}\right)
\end{aligned}
$$

Thus,

$$
p=\sigma^{-1}\left(p^{2}\right)
$$

Theorem 8. $\sigma^{-1}\left(p^{k}\right)=0$, where p is a prime, for all integer $k \geq 3$.
Proof. We will prove this using induction, so let's start with $k=3$.

$$
\begin{aligned}
0 & =\sigma\left(p^{3}\right) \sigma^{-1}(1)+\sigma\left(p^{2}\right) \sigma^{-1}(p)+\sigma(p) \sigma^{-1}\left(p^{2}\right)+\sigma(1) \sigma^{-1}\left(p^{3}\right) \\
& =\left(1+p+p^{2}+p^{3}\right)+\left(1+p+p^{2}\right)(-p-1)+(1+p)(p)+\sigma^{-1}\left(p^{3}\right) \\
& =\left(1+p+p^{2}+p^{3}\right)+\left(-1-p-p^{2}-p^{3}-p-p^{2}\right)+\left(p+p^{2}\right)+\sigma^{-1}\left(p^{3}\right) \\
& =\sigma^{-1}\left(p^{3}\right)
\end{aligned}
$$

That takes care of the base case; let's assume that $\sigma^{-1}\left(p^{n}\right)=0$ for all $n, 3 \leq n<k$ and see what happens.

$$
\begin{aligned}
0= & \sigma\left(p^{k}\right) \sigma^{-1}(1)+\sigma\left(p^{k-1}\right) \sigma^{-1}(p)+\sigma\left(p^{k-2}\right) \sigma^{-1}\left(p^{2}\right)+\cdots+\sigma(1) \sigma^{-1}\left(p^{k}\right) \\
= & \left(1+p+p^{2}+\cdots+p^{k}\right)+\left(1+p+p^{2}+\cdots+p^{k-1}\right)(-p-1) \\
& +\left(1+p+p^{2}+\cdots+p^{k-2}\right)(p)+\sigma^{-1}\left(p^{k}\right) \\
= & \left(1+p+p^{2}+\cdots+p^{k}\right)-\left(1+2 p+2 p^{2}+\cdots+2 p^{k-1}+p^{k}\right) \\
& \quad+\left(p+p^{2}+\cdots+p^{k-1}\right)+\sigma^{-1}\left(p^{k}\right) \\
= & \sigma^{-1}\left(p^{k}\right)
\end{aligned}
$$

These are all the cases; thus, we can generate the sigma inverse function for all n. If we write n in canonical prime factorization form, $n=\prod_{i} p_{i}{ }^{e_{i}}$, and define the sequence $\left\{a_{i}\right\}$ as

$$
a_{i}= \begin{cases}-p-1, & \text { if } e_{1}=1 \\ p, & \text { if } e_{1}=2 \\ 0, & \text { if } e_{i}>2\end{cases}
$$

Then, $\sigma^{-1}(n)=\prod_{i} a_{i}$.
Note. The values $\sigma^{-1}(n)$, starting $1,-3,-4,2,-6,12, \ldots$, have now been added to Sloane's Encyclopedia [2, sequence A046692].

Acknowledgement. The author was partially supported by NFS grant DMS9983320.

References

1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
2. N. J. A. Sloane, The On-Line Version of the Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/eisonline.html

Andrew Feist
Department of Mathematics
Duke University
Durham, NC 27708-0320
email: andrewf@math.duke.edu

