ANOTHER LOWER BOUND FOR $\frac{\sin x}{x}$

Russell Euler and Jawad Sadek

The limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x} \tag{*}
\end{equation*}
$$

allows us to compute the derivatives of $\sin x$ and $\cos x$. As pointed out by Professor Krantz [1], however, the way it is calculated in most calculus books in print follows a circular argument. In fact, it is customary to use the Pinching Theorem by giving an upper and lower bound for $\frac{\sin x}{x}$. The upper bound

$$
\frac{\sin x}{x} \leq 1
$$

is trivial as it can be found by comparing the length of a chord with the length of the corresponding arc of a circle. The lower estimate

$$
\frac{\sin x}{x} \geq \cos x
$$

is usually done assuming the knowledge of the area of a sector, which in turn depends on knowing the area of a circle. To know the area of a circle, however, most calculus books make use of the limit $(*)$. To avoid this circular argument, Professor Krantz proposed in [1] the alternative lower bound

$$
\frac{\sin x}{x}>\frac{1}{1+\tan x}
$$

This estimate avoids the use of the area of a circle and uses only the definition of arc length and some elementary geometry. A different estimate was given in [2]. The authors proved the inequalities

$$
\sin x \leq x \leq \tan x
$$

from which the inequalities

$$
\cos x \leq \frac{\sin x}{x} \leq 1
$$

follow easily. This was done avoiding the use of the area of a circle and using the definition of length of an arc and some comparisons of linear segments involved in computing the length of an arc of a circle. The purpose of our note is to provide yet another lower estimate for $\frac{\sin x}{x}$. Our estimate is easier to present to first year calculus students. It makes use of the limit

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \tag{**}
\end{equation*}
$$

which is used in the calculation of the derivative of $\sin x$ in most calculus books anyway. We also make use of another estimate used in [1], in addition to the trivial comparison of a chord against arc of a circle. In what follows we assume that $0<x<\frac{\pi}{2}$.

We first include a calculation of $(* *)$ to show that our method does not depend on the area of a circle. The following argument is well-known. Since x is larger than m (see Figure 1), we have

$$
0<\frac{1-\cos x}{x}<\frac{1-\cos x}{m}
$$

Now

$$
\begin{aligned}
\frac{1-\cos x}{m} & =\frac{1-\cos x}{\sqrt{\sin ^{2} x+(1-\cos x)^{2}}} \\
& =\frac{1-\cos x}{\sqrt{\sin ^{2} x+1-2 \cos x+\cos ^{2} x}} \\
& =\frac{1-\cos x}{\sqrt{2-2 \cos x}} \\
& =\frac{1}{\sqrt{2}} \sqrt{1-\cos x} .
\end{aligned}
$$

Figure 1.
By the Pinching Theorem,

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

To compute (*) we will use the estimate

$$
\begin{equation*}
\sin x+b>x \tag{***}
\end{equation*}
$$

(see Figure 1). This estimate was used in part of the argument in [1] to show

$$
\frac{\sin x}{x}>\frac{1}{1+\tan x}
$$

Although $(* * *)$ is acceptable on heuristic grounds, a careful and simple argument based on the definition of arc length was given in [1] also. To obtain our estimate divide $(* * *)$ by x and get

$$
\frac{\sin x}{x}+\frac{1-\cos x}{x}>1
$$

Take the limit as $x \rightarrow 0$ to get

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x} \geq 1
$$

References

1. S. G. Krantz, "On the Area Inside a Circle," Missouri Journal of Mathematical Sciences, 4 (1992), 2-8.
2. R. E. Bayne, J. E. Joseph, and M. H. Kwack, "On the Length of a Circular Arc," Missouri Journal of Mathematical Sciences, 11 (1999), 84-86.

Russell Euler
Mathematics and Statistics Department
Northwest Missouri State University
Maryville, MO 64468
email: reuler@mail.nwmissouri.edu
Jawad Sadek
Mathematics and Statistics Department
Northwest Missouri State University
Maryville, MO 64468
email: jawads@mail.nwmissouri.edu

