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INFINITELY MANY COMPOSITE NSW NUMBERS:

AN INDUCTIVE PROOF

James A. Sellers

1. Motivation. The NSW numbers were introduced approximately 20 years

ago [3] in connection with the order of certain simple groups. These are the numbers

fn which satisfy the recurrence

fn+1 = 6fn − fn−1 (1)

with initial conditions f1 = 1 and f2 = 7.

In recent years, these numbers have been studied from a variety of perspectives

[1, 2]. Moreover, the author, in collaboration with Hugh Williams, has proven that

there are infinitely many composite NSW numbers [4] as requested in [1]. The goal

of this note is to provide a purely inductive proof of the main theorem in [4]. We

restate it here.

Theorem 1.1. For all m ≥ 1 and all n ≥ 0, fm|f(2m−1)n+m.

2. The Necessary Tools. To prove Theorem 1.1, we need to develop a few

key tools.

Proposition 2.1. For all integers a, b ≥ 0, and for all 1 ≤ j ≤ a+ b− 2, we have

fa+b = sj+1fa+b−j − sjfa+b−j−1 (2)

where

sj =

j∑

i=1

(−1)i+jfi.

Proof. We prove this proposition using induction on j. First, when j = 1, the

right hand side of (2) is (f2 − f1)fa+b−1 − f1fa+b−2 or 6fa+b−1 − fa+b−2, which

equals fa+b thanks to (1).

Next, we assume

fa+b = sj+1fa+b−j − sjfa+b−j−1
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for j < a+ b− 2. Thus, since fa+b−j = 6fa+b−j−1 − fa+b−j−2, we have

fa+b = sj+1(6fa+b−j−1 − fa+b−j−2)− sjfa+b−j−1

= (6sj+1 − sj)fa+b−j−1 − sj+1fa+b−j−2.

Then we note that by (1)

6sj+1 − sj = 6

j+1∑

i=1

(−1)i+j+1fi −

j∑

i=1

(−1)i+jfi

= 6(−1)j+2f1 + 6

j+1∑

i=2

(−1)i+j+1fi −

j∑

i=1

(−1)i+jfi

= 6(−1)j+2f1 + 6

j∑

i=1

(−1)i+j+2fi+1 −

j∑

i=1

(−1)i+jfi

= (f2 − f1)(−1)j+2 +

j∑

i=1

(−1)i+j+2(6fi+1 − fi)

= (f2 − f1)(−1)j+2 +

j∑

i=1

(−1)i+j+2fi+2

= (f2 − f1)(−1)j+2 +

j+2∑

i=3

(−1)i+jfi

=

j+2∑

i=1

(−1)i+jfi

= sj+2.
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Therefore, we have

fa+b = (6sj+1 − sj)fa+b−j−1 − sj+1fa+b−j−2

= sj+2fa+b−j−1 − sj+1fa+b−j−2,

which completes the proof of Proposition 2.1.

Proposition 2.2. For all m ≥ 1 and for all 1 ≤ c ≤ m− 1, fm|fm+c + fm−c.

Proof. For c = 1, we know from (1) that 6fm = fm+1+fm−1, so that fm|fm+1+

fm−1. Next, we assume fm|fm+c + fm−c for 1 ≤ c ≤ d for some value d < m− 1.

Since

fm+d+1 = 6fm+d − fm+d−1 and fm−d−1 = 6fm−d − fm−d+1,

we know

fm+d+1 + fm−(d+1) = 6fm+d − fm+d−1 + 6fm−d − fm−d+1

= 6(fm+d + fm−d)− (fm+d−1 + fm−(d−1)).

By the induction hypothesis, the result follows.

Proposition 2.3. For all m ≥ 1, fm|s2m−1.

Proof. We see that

s2m−1 =

2m−1∑

i=1

(−1)i−1fi = f1 − f2 + f3 − · · ·+ (−1)m−1fm + · · ·+ f2m−1.

Notice that this sum is centered about fm, which divides itself, and that the rest of

the terms can be paired in such a way that Proposition 2.2 can be applied easily.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. When n = 0, the result is clear. Next, assume

fm|f(2m−1)n+m or fm|f2mn−n+m. We want to prove

fm|f(2m−1)(n+1)+m or fm|f2mn−n+m+(2m−1).
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Using Proposition 2.1 with a = 2mn−n+m, b = 2m− 1, and j = 2m− 2, we have

f2mn−n+m+(2m−1) = s2m−1f2mn−n+m+1 − s2m−2f2mn−n+m.

From Proposition 2.3, we know fm|s2m−1, and from the induction hypothesis,

fm|f2mn−n+m. The result follows.
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