SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
141. [2003, 200] Proposed by Kenneth B. Davenport, Frackville, Pennsylvania.
(a) Show that

$$
\sum_{k=1}^{n-1} \frac{1}{1-\tan ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{n-1}{2}
$$

for $n=3,5,7,9, \ldots$.
(b) Show that

$$
\sum_{k=1}^{n-1} \frac{1}{1+\tan ^{2}\left(\frac{k \pi}{2 n}\right)}=\frac{n-1}{2}
$$

for $n=2,3,4,5, \ldots$.
Solution by Joe Howard, Portales, New Mexico. Note that $\cos \theta=-\cos (\pi-\theta)$ and $\sec \theta=-\sec (\pi-\theta)$. By pairing in this way (Ex: $\cos \frac{\pi}{3}+\cos \frac{2 \pi}{3}=0$) it follows that

$$
\sum_{k=1}^{n-1} \cos \frac{k \pi}{n}=0 \text { and } \sum_{k=1}^{n-1} \sec \frac{k \pi}{n}=0 \text { for } n=3,5,7,9, \ldots
$$

Also, $\cos \frac{\pi}{2}=0$ so

$$
\sum_{k=1}^{n-1} \cos \frac{k \pi}{n}=0 \text { for } n=2,4,6,8, \ldots
$$

(a) For $n=3,5,7,9, \ldots$

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \frac{1}{1-\tan ^{2} \frac{k \pi}{2 n}}=\sum_{k=1}^{n-1} \frac{\cos ^{2} \frac{k \pi}{2 n}}{\cos ^{2} \frac{k \pi}{2 n}-\sin ^{2} \frac{k \pi}{2 n}}=\frac{1}{2} \sum_{k=1}^{n-1} \frac{1+\cos \frac{k \pi}{n}}{\cos \frac{k \pi}{n}} \\
& \quad=\frac{1}{2} \sum_{k=1}^{n-1}\left(1+\sec \frac{k \pi}{n}\right)=\frac{n-1}{2}+\frac{1}{2} \sum_{k=1}^{n-1} \sec \frac{k \pi}{n}=\frac{n-1}{2}
\end{aligned}
$$

(b) For $n=2,3,4,5, \ldots$

$$
\begin{gathered}
\sum_{k=1}^{n-1} \frac{1}{1+\tan ^{2} \frac{k \pi}{2 n}}=\sum_{k=1}^{n-1} \cos ^{2} \frac{k \pi}{2 n}=\frac{1}{2} \sum_{k=1}^{n-1}\left(1+\cos \frac{k \pi}{n}\right) \\
\quad=\frac{n-1}{2}+\frac{1}{2} \sum_{k=1}^{n-1} \cos \frac{k \pi}{n}=\frac{n-1}{2}
\end{gathered}
$$

Also solved by Joe Flowers, Texas Lutheran University, Sequin, Texas; Don Redmond, Southern Illinois University, Carbondale, Illinois; Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri; Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan; and the proposer.

Comment by the proposer. For a related problem, see Problem H-566 [2000, 377; 2001, 474-476] in The Fibonacci Quarterly.
142. [2003, 201] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Solve the differential equation

$$
y^{\prime}+\frac{y}{x^{x}}\left(x^{x} \ln y\right)^{n}+y(\ln x \ln y)=0
$$

where n is any real number.

Solution by Joe Flowers, Texas Lutheran University, Sequin, Texas. The substitution $v=x^{x} \ln y$ leads in straightforward fashion to the Bernoulli equation

$$
v^{\prime}-v=-v^{n} .
$$

If $n=1$, then $v^{\prime}=0$, so $v=c$, hence

$$
y=e^{\frac{c}{x^{x}}}
$$

For $n \neq 1$, the substitution $v=w^{\frac{1}{1-n}}$ yields the linear equation

$$
w^{\prime}+(n-1) w=n-1
$$

Applying the integrating factor $e^{(n-1) x}$, we obtain the solution

$$
w=1+c e^{(1-n) x}
$$

which then gives

$$
v=\left(1+c e^{(1-n) x}\right)^{\frac{1}{1-n}}
$$

and finally

$$
y=\exp \left(\frac{\left(1+c e^{(1-n) x}\right)^{\frac{1}{1-n}}}{x^{x}}\right)
$$

Also solved by Kenneth B. Davenport, Frackville, Pennsylvania, Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan, J. D. Chow, Edinburg, Texas; and the proposer.
144. [2003, 201] Proposed by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan.

Prove that in any triangle the following inequality holds:

$$
\sum \frac{b+c}{a} \tan \frac{B}{2} \tan \frac{C}{2} \geq 2
$$

where the notations are usual.

Solution I by Mangho Ahuja, Southeast Missouri State University, Cape Girardeau, Missouri. Using the identity

$$
\tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}
$$

where $s=(a+b+c) / 2$, we have

$$
\tan \frac{B}{2} \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \sqrt{\frac{(s-b)(s-a)}{s(s-c)}}=\frac{s-a}{s}
$$

The given expression

$$
\begin{aligned}
\sum \frac{b+c}{a} & \tan \frac{B}{2} \tan \frac{C}{2}=\sum \frac{b+c}{a} \cdot \frac{s-a}{s}=\sum \frac{b+c}{a}\left(1-\frac{a}{s}\right) \\
& =\sum \frac{b+c}{a}-\sum \frac{b+c}{s}=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}-\frac{2 a+2 b+2 c}{s} \\
& =\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)-\frac{4 s}{s} \\
& =\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)-4
\end{aligned}
$$

But using the AM-GM inequality, the quantity

$$
\frac{a}{b}+\frac{b}{a} \geq 2
$$

Hence, the given expression is greater than or equal to

$$
2+2+2-4=2
$$

Solution II by Joe Howard, Portales, New Mexico. We use the formula that

$$
\sum_{\text {cyclic }} \tan \frac{B}{2} \tan \frac{C}{2}=1
$$

the inequality

$$
u+\frac{1}{u} \geq 2
$$

and Chebyshev's Inequality

$$
\sum_{i=1}^{n} x_{i} y_{i} \geq \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)
$$

where $x_{1} \geq x_{2} \geq \ldots \geq x_{n}>0$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}>0$. Without loss of generality assume $a \geq b \geq c$. Then

$$
\frac{a+b}{c} \geq \frac{a+c}{b} \geq \frac{b+c}{a}
$$

and

$$
\tan \frac{A}{2} \tan \frac{B}{2} \geq \tan \frac{A}{2} \tan \frac{C}{2} \geq \tan \frac{B}{2} \tan \frac{C}{2}
$$

Then

$$
\begin{aligned}
& \sum_{\text {cyclic }} \frac{b+c}{a} \tan \frac{B}{2} \tan \frac{C}{2} \\
& \quad \geq \frac{1}{3}\left(\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}\right)\left(\sum_{\text {cyclic }} \tan \frac{B}{2} \tan \frac{C}{2}\right) \\
& \quad \geq \frac{1}{3}(6)(1)=2 .
\end{aligned}
$$

Also solved by the proposer.

