ANOTHER ELEMENTARY PROOF OF THE CONVERGENCE-DIVERGENCE OF p-SERIES

Rasul A. Khan

Recently Khan [2] gave a simple proof of the convergence-divergence of the p-series $\sum_{n=1}^{\infty} 1/n^p$. The divergence of this series for $p \leq 1$ was shown by contradiction while the convergence of the series for p > 1 was established by the boundedness of the monotonic partial sums [2]. Here, we give a more direct and very elementary proof of the same by using only the sum of a geometric series. Moreover, a telescoping method is used to find sums of some interesting series.

We use the following simple fact:

$$\sum_{n=1}^{\infty} a r^{n-1} = \frac{a}{1-r}, \quad |r| < 1.$$
(1)

We consider integers j from 2^m to $2^{m+1} - 1$ (m = 0, 1, 2, ...), and note that the number of terms are $2^{m+1} - 1 - (2^m - 1) = 2^{m+1} - 2^m = 2^m$. Then, for any p we write the p-series as

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \sum_{m=0}^{\infty} \sum_{j=2^m}^{2^{m+1}-1} \frac{1}{j^p}.$$
 (2)

If p > 1, it then follows from (1) and (2) that

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \le \sum_{m=0}^{\infty} \frac{2^m}{2^{mp}} = \sum_{m=0}^{\infty} \frac{1}{2^{m(p-1)}} = \frac{2^{p-1}}{2^{p-1}-1},$$

and the series converges. To show the divergence for $p \leq 1$, we consider p = 1 first. It is clear from (2) that

$$\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{m=0}^{\infty} \sum_{j=2^m}^{2^{m+1}-1} \frac{1}{j} \ge \sum_{m=0}^{\infty} \frac{2^m}{2^{m+1}} = \infty.$$

If $p \leq 1$, then $\sum_{n=1}^{\infty} 1/n^p \geq \sum_{n=1}^{\infty} 1/n = \infty$, and the series diverges. Hence, the convergence-divergence of the *p*-series has been established for every value of *p*.

The preceding observation can be further used to determine the convergence/divergence of some other series $\sum_{n=k}^{\infty} f(n)$ $(k \ge 1)$, where f(x) is a decreasing positive function. For example, we have

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} = \sum_{m=1}^{\infty} \sum_{j=2^m}^{2^{m+1}-1} \frac{1}{j(\ln j)^p}$$

and

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \le \sum_{m=1}^{\infty} \frac{2^m}{2^m (m\ln 2)^p} = \sum_{m=1}^{\infty} \frac{1}{c \ m^p}, \quad c = (\ln 2)^p,$$

and the series converges if p > 1 by the *p*-series. Moreover,

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} \ge \sum_{m=1}^{\infty} \frac{2^m}{2^{m+1} \ln 2^{m+1}} = \frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{(m+1) \ln 2} = +\infty,$$

and thus, $\sum_{n=2}^{\infty} 1/(n(\ln n)^p)$ diverges for $p \leq 1$. Perhaps, even more interesting is the series $\sum_{n=2}^{\infty} 1/((\ln n)^p)$ for any p > 0. Clearly,

$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^p} = \sum_{m=1}^{\infty} \sum_{j=2^m}^{2^{m+1}-1} \frac{1}{(\ln j)^p} \ge \sum_{m=1}^{\infty} \frac{2^m}{(\ln 2^{m+1})^p} = \sum_{m=1}^{\infty} \frac{2^m}{(m+1)^p (\ln 2)^p}.$$

Since $\lim_{m\to\infty} 2^m/(m^p) = \infty$ $(m-p\ln m = O(m)$ and $2^{m-p\ln m} \to \infty$), the series $\sum_{n=2}^{\infty} 1/((\ln n)^p)$ diverges for every fixed p.

It is interesting to note that the telescoping method can be used to find the sum of the series $\sum_{n=1}^{\infty} n/(2^n)$ and $\sum_{n=1}^{\infty} n^2/(2^n)$, etc. However, as suggested by a colleague we consider a more general case, namely, $\sum_{n=1}^{\infty} n^k r^n$, |r| < 1. First we observe that the series converges absolutely. To see this let $r \neq 0$ and note that $|r|^n = \exp(-\alpha n)$, where $\alpha = -\ln |r| > 0$. Since $\exp(\alpha n) > (\alpha^{k+2}n^{k+2})/((k+2)!)$, hence, $n^k |r|^n = n^k \exp(-\alpha n) < \lambda_k/(n^2)$, for all $n \geq 1$, where $\lambda_k = ((k+2)!)/(\alpha^{k+2})$. Thus, $\sum_{n=1}^{\infty} n^k |r|^n \leq \lambda_k \sum_{n=1}^{\infty} 1/(n^2) < \infty$ by the *p*-series. Therefore, letting

 $a_n = n^k r^n$, $\lim_{n \to \infty} n^k r^n = \lim_{n \to \infty} a_n = 0$. It then follows that $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ converges, and $\sum_{n=1}^{\infty} (a_n - a_{n+1}) = a_1$. Now set $S(k) = \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n^k r^n$. Clearly, S(0) = r/(1-r), and applying the binomial theorem we have

$$a_n - a_{n+1} = n^k r^n - (n+1)^k r^{n+1} = (1-r)n^k r^n - \sum_{j=0}^{k-1} \binom{k}{j} n^j r^{n+1}.$$

Now summing over n and using the telescoping sum we obtain

$$r = a_1 = \sum_{n=1}^{\infty} (a_n - a_{n+1}) = \sum_{n=1}^{\infty} (1 - r)n^k r^n - \sum_{n=1}^{\infty} \sum_{j=0}^{k-1} r\binom{k}{j} n^j r^n$$
$$= (1 - r)\sum_{n=1}^{\infty} n^k r^n - r\sum_{j=0}^{k-1} \binom{k}{j} \sum_{n=1}^{\infty} n^j r^n = (1 - r)S(k) - r\sum_{j=0}^{k-1} \binom{k}{j}S(j).$$

Hence, the preceding equation gives

$$S(k) = \frac{r}{1-r} \left(1 + \sum_{j=0}^{k-1} \binom{k}{j} S(j) \right) = S(0) \left(1 + \sum_{j=0}^{k-1} \binom{k}{j} S(j) \right).$$

In particular, for r = 1/2, using the recurrence we obtain

$$S(0) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1, \quad S(1) = \sum_{n=1}^{\infty} \frac{n}{2^n} = 2,$$
$$S(2) = \sum_{n=1}^{\infty} \frac{n^2}{2^n} = 6, \quad S(3) = \sum_{n=1}^{\infty} \frac{n^3}{2^n} = 26, \quad \text{etc.}$$

It is tempting to find a closed formula for S(k), but unfortunately it appears that such a formula is intractable and cannot be obtained even for the special case r = 1/2.

References

- 1. T. Cohen and W. J. Knight, "Convergence and Divergence of $\sum_{n=1}^{\infty} 1/n^p$, Mathematics Magazine, 52 (1979), 178.
- R. A. Khan, "Convergence-Divergence of p-Series," College Mathematics Journal, 32 (2001), 206–207.

Rasul A. Khan Department of Mathematics Cleveland State University Cleveland, OH 44115 email: khan@math.csuohio.edu