ANOTHER ELEMENTARY PROOF OF THE CONVERGENCE-DIVERGENCE OF p-SERIES

Rasul A. Khan

Recently Khan [2] gave a simple proof of the convergence-divergence of the p-series $\sum_{n=1}^{\infty} 1 / n^{p}$. The divergence of this series for $p \leq 1$ was shown by contradiction while the convergence of the series for $p>1$ was established by the boundedness of the monotonic partial sums [2]. Here, we give a more direct and very elementary proof of the same by using only the sum of a geometric series. Moreover, a telescoping method is used to find sums of some interesting series.

We use the following simple fact:

$$
\begin{equation*}
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}, \quad|r|<1 \tag{1}
\end{equation*}
$$

We consider integers j from 2^{m} to $2^{m+1}-1(m=0,1,2, \ldots)$, and note that the number of terms are $2^{m+1}-1-\left(2^{m}-1\right)=2^{m+1}-2^{m}=2^{m}$. Then, for any p we write the p-series as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\sum_{m=0}^{\infty} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{j^{p}} \tag{2}
\end{equation*}
$$

If $p>1$, it then follows from (1) and (2) that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \leq \sum_{m=0}^{\infty} \frac{2^{m}}{2^{m p}}=\sum_{m=0}^{\infty} \frac{1}{2^{m(p-1)}}=\frac{2^{p-1}}{2^{p-1}-1}
$$

and the series converges. To show the divergence for $p \leq 1$, we consider $p=1$ first. It is clear from (2) that

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\sum_{m=0}^{\infty} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{j} \geq \sum_{m=0}^{\infty} \frac{2^{m}}{2^{m+1}}=\infty
$$

If $p \leq 1$, then $\sum_{n=1}^{\infty} 1 / n^{p} \geq \sum_{n=1}^{\infty} 1 / n=\infty$, and the series diverges. Hence, the convergence-divergence of the p-series has been established for every value of p.

The preceding observation can be further used to determine the convergence/divergence of some other series $\sum_{n=k}^{\infty} f(n)(k \geq 1)$, where $f(x)$ is a decreasing positive function. For example, we have

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}=\sum_{m=1}^{\infty} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{j(\ln j)^{p}}
$$

and

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}} \leq \sum_{m=1}^{\infty} \frac{2^{m}}{2^{m}(m \ln 2)^{p}}=\sum_{m=1}^{\infty} \frac{1}{c m^{p}}, \quad c=(\ln 2)^{p}
$$

and the series converges if $p>1$ by the p-series. Moreover,

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n} \geq \sum_{m=1}^{\infty} \frac{2^{m}}{2^{m+1} \ln 2^{m+1}}=\frac{1}{2} \sum_{m=1}^{\infty} \frac{1}{(m+1) \ln 2}=+\infty
$$

and thus, $\sum_{n=2}^{\infty} 1 /\left(n(\ln n)^{p}\right)$ diverges for $p \leq 1$. Perhaps, even more interesting is the series $\sum_{n=2}^{\infty} 1 /\left((\ln n)^{p}\right)$ for any $p>0$. Clearly,

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{p}}=\sum_{m=1}^{\infty} \sum_{j=2^{m}}^{2^{m+1}-1} \frac{1}{(\ln j)^{p}} \geq \sum_{m=1}^{\infty} \frac{2^{m}}{\left(\ln 2^{m+1}\right)^{p}}=\sum_{m=1}^{\infty} \frac{2^{m}}{(m+1)^{p}(\ln 2)^{p}}
$$

Since $\lim _{m \rightarrow \infty} 2^{m} /\left(m^{p}\right)=\infty\left(m-p \ln m=O(m)\right.$ and $\left.2^{m-p \ln m} \rightarrow \infty\right)$, the series $\sum_{n=2}^{\infty} 1 /\left((\ln n)^{p}\right)$ diverges for every fixed p.

It is interesting to note that the telescoping method can be used to find the sum of the series $\sum_{n=1}^{\infty} n /\left(2^{n}\right)$ and $\sum_{n=1}^{\infty} n^{2} /\left(2^{n}\right)$, etc. However, as suggested by a colleague we consider a more general case, namely, $\sum_{n=1}^{\infty} n^{k} r^{n},|r|<1$. First we observe that the series converges absolutely. To see this let $r \neq 0$ and note that $|r|^{n}=$ $\exp (-\alpha n)$, where $\alpha=-\ln |r|>0$. Since $\exp (\alpha n)>\left(\alpha^{k+2} n^{k+2}\right) /((k+2)!)$, hence, $n^{k}|r|^{n}=n^{k} \exp (-\alpha n)<\lambda_{k} /\left(n^{2}\right)$, for all $n \geq 1$, where $\lambda_{k}=((k+2)!) /\left(\alpha^{k+2}\right)$. Thus, $\sum_{n=1}^{\infty} n^{k}|r|^{n} \leq \lambda_{k} \sum_{n=1}^{\infty} 1 /\left(n^{2}\right)<\infty$ by the p-series. Therefore, letting
$a_{n}=n^{k} r^{n}, \lim _{n \rightarrow \infty} n^{k} r^{n}=\lim _{n \rightarrow \infty} a_{n}=0$. It then follows that $\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)$ converges, and $\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)=a_{1}$. Now set $S(k)=\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} n^{k} r^{n}$. Clearly, $S(0)=r /(1-r)$, and applying the binomial theorem we have

$$
a_{n}-a_{n+1}=n^{k} r^{n}-(n+1)^{k} r^{n+1}=(1-r) n^{k} r^{n}-\sum_{j=0}^{k-1}\binom{k}{j} n^{j} r^{n+1}
$$

Now summing over n and using the telescoping sum we obtain

$$
\begin{aligned}
r & =a_{1}=\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)=\sum_{n=1}^{\infty}(1-r) n^{k} r^{n}-\sum_{n=1}^{\infty} \sum_{j=0}^{k-1} r\binom{k}{j} n^{j} r^{n} \\
& =(1-r) \sum_{n=1}^{\infty} n^{k} r^{n}-r \sum_{j=0}^{k-1}\binom{k}{j} \sum_{n=1}^{\infty} n^{j} r^{n}=(1-r) S(k)-r \sum_{j=0}^{k-1}\binom{k}{j} S(j) .
\end{aligned}
$$

Hence, the preceding equation gives

$$
S(k)=\frac{r}{1-r}\left(1+\sum_{j=0}^{k-1}\binom{k}{j} S(j)\right)=S(0)\left(1+\sum_{j=0}^{k-1}\binom{k}{j} S(j)\right)
$$

In particular, for $r=1 / 2$, using the recurrence we obtain

$$
\begin{aligned}
& S(0)=\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1, \quad S(1)=\sum_{n=1}^{\infty} \frac{n}{2^{n}}=2, \\
& S(2)=\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}=6, \quad S(3)=\sum_{n=1}^{\infty} \frac{n^{3}}{2^{n}}=26, \quad \text { etc. }
\end{aligned}
$$

It is tempting to find a closed formula for $S(k)$, but unfortunately it appears that such a formula is intractable and cannot be obtained even for the special case $r=1 / 2$.

References

1. T. Cohen and W. J. Knight, "Convergence and Divergence of $\sum_{n=1}^{\infty} 1 / n^{p}$, Mathematics Magazine, 52 (1979), 178.
2. R. A. Khan, "Convergence-Divergence of p-Series," College Mathematics Journal, 32 (2001), 206-207.

Rasul A. Khan
Department of Mathematics
Cleveland State University
Cleveland, OH 44115
email: khan@math.csuohio.edu

