JAPANESE THEOREM: A LITTLE KNOWN THEOREM WITH MANY PROOFS. (PART II)

Mangho Ahuja, Wataru Uegaki, and Kayo Matsushita

1. Later Attempts. By early 20th century Japanese mathematics had flourished and papers by Japanese mathematicians began to appear in western journals. In a 1906 paper in Mathesis [4], Prof. T. Hayashi conveyed no less than five different proofs of our theorem by Japanese mathematicians. To exhibit the rich variety of approaches to the theorem, all five proofs are presented here. While some proofs are easy, and others require a little patience, they all testify to the level of sophistication of Japanese mathematics at that time. Readers should refer to Part I for results (E1) to (E5) and (G1) to (G8).

Japanese Theorem (Quadrilateral Case). Let $A B C D$ be a quadrilateral inscribed in a circle. Let r_{1}, r_{2}, r_{3}, and r_{4} be the radii of the circles C_{1}, C_{2}, C_{3}, and C_{4} inscribed in the triangles $A B C, B C D, C D A$, and $D A B$, respectively. Then $r_{1}+r_{3}=r_{2}+r_{4}$.

Nagasawa's Proof. (Kamenosuke Nagasawa was born in 1860 and graduated from college in 1878. He had written 150 books and translations before his death in 1927.)

Let a, b, c, d, e, and f denote the lengths of the perpendiculars from O to lines $A B, B C, C D, D A, A C$, and $B D$, respectively. Using (G4) on triangles $A B C$ and $C D A$, we get $R+r_{1}=a+b-e$, and $R+r_{3}=c+d+e$. On adding, we have $2 R+r_{1}+r_{3}=a+b+c+d$. Similarly, from triangles $B C D$ and $D A B$ we get $2 R+r_{2}+r_{4}=a+b+c+d$. On equating the two results, we get $r_{1}+r_{3}=r_{2}+r_{4}$.

Proof by Sawayama. (Yuzaburo Sawayama (1860-1936) was a professor in the Japanese army and later at the Tokyo Physics College.)

Let a, b, c, d, e, and f denote perpendicular from O to lines $A B, B C, C D, D A$, $A C$, and $B D$, respectively. Let us extend the perpendicular, say from O to $A B$, to reach the midpoint of the arc $A B$. Let u_{1} denote the length from the midpoint of the chord $A B$ to the midpoint of the arc $A B$. Let $u_{2}, u_{3}, u_{4}, u_{5}$, and u_{6} be similarly defined for the chords $B C, C D, D A, A C$, and $B D$, respectively. Note that $u_{1}=R-a, u_{2}=R-b$, and so on. From triangle $A B C, u_{1}+u_{2}+(2 R-$ $\left.u_{5}\right)=(R-a)+(R-b)+(R+e)=3 R-(a+b-e)$, which by (G4) equals $3 R-\left(R+r_{1}\right)=2 R-r_{1}$. Similarly, from triangle $C D A$ we get $u_{3}+u_{4}+u_{5}=$ $(R-c)+(R-d)+(R-e)=3 R-(c+d+e)=3 R-\left(R+r_{3}\right)=2 R-r_{3}$. On adding these two, we get $u_{1}+u_{2}+u_{3}+u_{4}+2 R=4 R-\left(r_{1}+r_{3}\right)$, or $u_{1}+u_{2}+u_{3}+u_{4}=2 R-\left(r_{1}+r_{3}\right)$. Similarly, from triangles $B C D$ and $D A B$ we get $u_{1}+u_{2}+u_{3}+u_{4}=2 R-\left(r_{2}+r_{4}\right)$. On equating the two we get $r_{1}+r_{3}=r_{2}+r_{4}$.

Proof by Nozaki. (Very little is known about Tsunezo Nozaki. His proof below uses result (G7) which says that $I_{1} I_{2} I_{3} I_{4}$ is a rectangle.)

If I_{1}, I_{2}, I_{3}, and I_{4} denote the incenters of triangles $A B C, B C D, C D A$, and $D A B$, respectively, then by (G7) we know that the figure $I_{1} I_{2} I_{3} I_{4}$ is a rectangle. Using (G6) we get $O I_{1}^{2}+O I_{3}^{2}=O I_{2}^{2}+O I_{4}^{2}$. But for each $i, O I_{i}^{2}=R^{2}-2 R r_{i}$ by (G3). This means $R^{2}-2 R r_{1}+R^{2}-2 R r_{3}=R^{2}-2 R r_{2}+R^{2}-2 R r_{4}$, which simplifies to $r_{1}+r_{3}=r_{2}+r_{4}$.

Proof by Matsuo and Omori. (Very little is known about the two authors. Their proof hinges on a clever observation that the projection of $I_{1} I_{3}$ perpendicular to $A C$ is exactly $r_{1}+r_{3}$. Since $I_{1} I_{3}=I_{2} I_{4}$ we only need to show that $I_{1} I_{3}$ and $A C$ intersect at the same angle as $I_{2} I_{4}$ and $B D$.)

Let $A C$ intersect $I_{1} I_{3}$ in V and $B D$ intersect $I_{2} I_{4}$ in W. Angles $A V I_{3}$ and $B W I_{2}$, will be equal if we can show that the other two angles of triangles $A V I_{3}$ and $B W I_{2}$ are equal.
First, $\angle V A I_{3}=\frac{1}{2}(\angle C A D)=\frac{1}{2}(\angle C B D)=\angle I_{2} B W$.
Secondly, to prove that the angles $V I_{3} A$ and $W I_{2} B$ are equal, we note that $\angle V I_{3} A=\angle V I_{3} I_{4}+\angle I_{4} I_{3} A$, and $\angle W I_{2} B=\angle W I_{2} I_{1}+\angle I_{1} I_{2} B$. But, in the rectangle $I_{1} I_{2} I_{3} I_{4}$ the angles $V I_{3} I_{4}$ and $W I_{2} I_{1}$ are equal. So we only need to show that $\angle I_{4} I_{3} A=\angle I_{1} I_{2} B$.
From (G2) we know that the points A, I_{4}, I_{3}, and D lie on a circle with center H. Also, the points B, I_{1}, I_{2}, and C lie on a circle with center F. So, $\angle I_{4} I_{3} A=$ $\angle I_{4} D A=\frac{1}{2}(\angle B D A)=\frac{1}{2}(\angle B C A)=\angle B C I_{1}=\angle I_{1} I_{2} B$.
Thus, triangles $A V I_{3}$ and $B W I_{2}$ are similar and $\angle A V I_{3}=\angle B W I_{2}$.

Since $I_{1} I_{3}=I_{2} I_{4}$, and $I_{1} I_{3}$ cuts $A C$ at the same angle as $I_{2} I_{4}$ cuts $B D$, the projection of $I_{1} I_{3}$ perpendicular to $A C$ equals the projection of $I_{2} I_{4}$ perpendicular to $B D$. These projections being exactly $r_{1}+r_{3}$ and $r_{2}+r_{4}$, we have $r_{1}+r_{3}=r_{2}+r_{4}$.

Proof by Chou. (Chou's full name is Shu Tatsu. Chou does not use the fact
 perpendiculars from I_{2} and I_{3} on $C D$, equals $r_{4}-r_{1}$.)
Let I_{1}, I_{2}, I_{3}, and I_{4} be the incenters of the triangles $A B C, B C D, C D A$, and $D A B$, respectively. We drop perpendiculars from I_{1} and I_{4} to side $A B$, meeting $A B$ at I_{1}^{\prime} and I_{4}^{\prime}. Similarly, let $I_{2} I_{2}^{\prime}$ and $I_{3} I_{3}^{\prime}$ be perpendiculars to $C D$. We will note that $I_{1} I_{1}^{\prime}=r_{1}, I_{4} I_{4}^{\prime}=r_{4}, I_{2} I_{2}^{\prime}=r_{2}$, and $I_{3} I_{3}^{\prime}=r_{3}$. We want to show that $r_{4}-r_{1}=r_{3}-r_{2}$. Let E, F, G, and H be the midpoints of the $\operatorname{arcs} A B, B C$, $C D$, and $D A$, respectively. Also, let B^{\prime} and C^{\prime} be points on the circle such that $\operatorname{arc} G B=\operatorname{arc} G B^{\prime}$, and $\operatorname{arc} E C=\operatorname{arc} E C^{\prime}$. Since $\operatorname{arcs} E A$ and $E B$ are equal and arcs $E C$ and $E C^{\prime}$ are equal, we have arc $A C^{\prime}=\operatorname{arc} B C$. Similarly, we find $\operatorname{arc} D B^{\prime}=\operatorname{arc} B C$. Hence, the $\operatorname{arcs} A C^{\prime}$ and $D B^{\prime}$ are equal, and by adding a piece of arc $B^{\prime} C^{\prime}$ to both, we have arc $A B^{\prime}=\operatorname{arc} D C^{\prime}$ and hence, $\angle A G B^{\prime}=\angle D E C^{\prime}$.
Let E, F, G, H be the midpoints of the arcs $A B, B C, C D, D A$, respectively. From (G2) we know that a circle with center E passes through the points A, I_{4}, I_{1}, and B, and a circle with center G passes through the points C, I_{2}, I_{3}, and D. Let C_{E} and C_{G} denote these two circles. Let circle C_{E} intersect $E C^{\prime}$ at J, and circle C_{G} intersect $G B^{\prime}$ at K. Let $I_{1} J$ intersect $I_{4} I_{4}^{\prime}$ at M and $I_{2} K$ intersect $I_{3} I_{3}^{\prime}$ at N. The idea behind these constructions are to show that $r_{4}-r_{1}=I_{4} M=I_{3} N=r_{3}-r_{2}$.

We will prove that the triangles $I_{1} M I_{4}$ and $I_{2} N I_{3}$ (i) are right angled at M and N, (ii) are similar because $\angle M I_{1} I_{4}=\angle I_{3} I_{2} N$, and (iii) are congruent because $I_{1} M=I_{2} N$.
To prove (i), we see that $\operatorname{arc} E A=\operatorname{arc} E B$, and $\operatorname{arc} E C=\operatorname{arc} E C^{\prime}$. Hence, $A B$ is parallel to $C C^{\prime}$. Also, from triangle $E C C^{\prime}$, we have $E C=E C^{\prime}$, and $E I_{1}=E J$, hence, $I_{1} J$ is parallel to $C C^{\prime}$ and also to $A B$. Thus, $I_{4} I_{4}^{\prime}$ is perpendicular to $I_{1} J$, and triangle $I_{1} M I_{4}$ is right angled at M. Similarly, triangle $I_{2} N I_{3}$ is right angled at N.
To prove (ii), we see that $\angle M I_{1} I_{4}=\angle J I_{1} I_{4}=\frac{1}{2}\left(\angle J E I_{4}\right)=\frac{1}{2}\left(\angle A G B^{\prime}\right)=$ $\frac{1}{2}\left(\angle I_{3} G K\right)=\angle I_{3} I_{2} N$.
To prove (iii), we note that $I_{1} M=I_{1}^{\prime} I_{4}^{\prime}$, and $I_{2} N=I_{2}^{\prime} I_{3}^{\prime}$. Now $I_{1}^{\prime} I_{4}^{\prime}=A I_{1}^{\prime}-A I_{4}^{\prime}$, and by (G8) equals $\frac{1}{2}(A B+A C-B C)-\frac{1}{2}(A B+A D-B D)=\frac{1}{2}(A C+B D-$ $B C-A D)$. Doing similar work, $I_{2}^{\prime} I_{3}^{\prime}=C I_{3}^{\prime}-C I_{2}^{\prime}=\frac{1}{2}(C D+A C-A D)-\frac{1}{2}(C D+$ $B C-B D)=\frac{1}{2}(A C+B D-B C-A D)$. Hence, $I_{1} M=I_{2} N$.
This shows that triangles $I_{1} M I_{4}$ and $I_{2} N I_{3}$ are congruent and $I_{4} M=r_{4}-r_{1}$ is equal to $I_{3} N=r_{3}-r_{2}$. Hence, $r_{1}+r_{3}=r_{2}+r_{4}$.
2. Generalization. While the quadrilateral case came to Japan from China, it was Y. Mikami from Japan who generalized the theorem from the quadrilateral to a polygon [6]. Instead of showing how some of the proofs already shown here would work in the case of a polygon, we will show two different proofs using induction.

One easy way is to choose two non-adjacent vertices A_{j} and A_{k}, draw diagonal $A_{j} A_{k}$, which will divide the polygon into two smaller polygons, and then use the induction hypothesis on the two smaller polygons.
Here is another way of showing that the theorem holds even when we add an extra vertex to the polygon.

Let P be a polygon with n vertices A_{1}, \ldots, A_{n}, and let Q be a polygon with vertices $A_{1}, \ldots, A_{n}, A_{n+1}$. Let $S_{j}(P)$ denote the sum of the radii of the incircles of P when triangulation is done from vertex A_{j}. Also, let $r[A B C]$ denote the inradius of triangle $A B C$. As for S_{1}, obviously $S_{1}(Q)=S_{1}(P)+r\left[A_{n} A_{n+1} A_{1}\right]$. What about S_{j} ?

We see that $S_{j}(Q)=S_{j}(P)-r\left[A_{j} A_{n} A_{1}\right]+r\left[A_{j} A_{n} A_{n+1}\right]+r\left[A_{j} A_{n+1} A_{1}\right]$. But from the quadrilateral case we have $r\left[A_{j} A_{n} A_{1}\right]+r\left[A_{n} A_{n+1} A_{1}\right]=r\left[A_{j} A_{n} A_{n+1}\right]+$ $r\left[A_{j} A_{n+1} A_{1}\right]$. Hence, $S_{j}(Q)=S_{j}(P)+r\left[A_{n} A_{n+1} A_{1}\right]$.
Now to prove the general case by induction, let A_{j} and A_{k} be any two vertices. By the induction hypothesis, $S_{j}(P)=S_{k}(P)$. Then, by adding $r\left[A_{n} A_{n+1} A_{1}\right]$ to each
we get $S_{j}(Q)=S_{k}(Q)$. This provides us with the inductive jump to go from P to Q.
3. Conclusion. One wonders why the Japanese theorem, which is not so well known even in Japan [8], has so many proofs. While only a few proofs look similar, others take us through different paths leading to the final summit. But they all display the power of classical plane geometry, used this time by the people from the Far East. On reading the different proofs one cannot but develop respect and admiration for the Japanese mathematicians of that time.
We hope that this paper inspires others to explore and unfold the story behind other forgotten theorems. Finally, we hope that it encourages fellow mathematicians to collaborate in similar multicultural projects.

Acknowledgements. Partial support for this project was received from the Grants and Research Funding Committee (GRFC) of Southeast Missouri State University. The authors wish to thank the staff of the libraries of Kyoto University and Mie University for locating many old documents related to this project.

References

1. H. Fukagawa and D. Pedoe, Japanese Temple Geometry Problems, The Charles Babbage Research Center, Winnipeg, Canada, 1989.
2. W. J. Greenstreet, "Japanese Mathematics," The Mathematical Gazette, 3 (1906), 268-270.
3. C. Hawn, "A Study of the Japanese Theorem," Masters Degree Thesis, Southeast Missouri State University, May 1996.
4. T. Hayashi, "Sur un Soi-Disant Theoreme Chinois," Mathesis, III (6) (1906), 257-260.
5. N. Mackinnon, "Friends in Youth," The Mathematical Gazette, 77 (1993), 2021.
6. Y. Mikami, "A Chinese Theorem in Geometry," Archiv der Mathematik und Physik, 3 (9) (1905), 308-310.
7. W. Uegaki, "On the Origin and History of the Japanese Theorem," Journal of Mie University, March 2001.
8. H. Yoshida, Personal Letter, March 27, 1996.
9. T. Yoshida, Zoku Shinpeki Sanpo Huroku Kai (manuscript, date unknown).

Mangho Ahuja
2575 Fairlane
Cape Girardeau, MO 63701
email: mangho@showme.net
Wataru Uegaki
Department of Math Education
Mie University
1515 Kamihama-cho
Tsu-shi, MIE
Japan 514-8507
email: uegaki@edu.mie-u.ac.jp
Kayo Matsushita
Center for the Promotion of Excellence in Higher Education
Kyoto University
Kyoto 606-8501
Japan
email: kmatsu@hedu.mbox.media.kyoto-u.ac.jp

