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PSEUDORESOLVENTS IN BANACH ALGEBRAS

Árpád Bényi and Bryan Dawson

Abstract. We give a sufficient condition for a family of pseudoresolvents in

a Banach algebra to be trivially zero. As an important consequence, we provide

an alternate proof of the classical result that the spectrum of any linear bounded

operator on a Banach space is nonempty. The proofs are elementary, requiring only

a basic knowledge of real and complex analysis.

1. Notation and Preliminaries. Let A denote a complex Banach Algebra,

i.e., A is a linear space over the field of complex numbersC endowed with a complete

norm ‖·‖ and a productA×A ∋ (x, y) 7→ xy ∈A such that the following properties

hold:

(1) (xy)z = x(yz) (associativity),

(2) x(y + z) = xy + xz and (y + z)x = yz + zx (distributivity),

(3) (αx)(βy) = (αβ)(xy),

(4) ‖xy‖ ≤ ‖x‖ ‖y‖,
(5) There exists an e ∈ A such that xe = ex = x and ‖e‖ = 1,

for all x, y ∈ A and α, β ∈ C. The condition (5) on the unit is sometimes omitted

from the definition of a Banach algebra. However, there is no loss of generality in

this omission, since the Banach algebras without a unit can be endowed with one

in a standard way; for more details, see [3].

We say that two pairs (α, x), (β, y) ∈ C×A are equivalent, and write (α, x) ∼
(β, y), if the following equalities hold:

(α, x) ∼ (β, y) ⇐⇒ x− y = (β − α)xy = (β − α)yx.

For example, if T is a bounded linear operator on some Banach space, we have

(λ1, (λ1I − T )−1) ∼ (λ2, (λ2I − T )−1),

and if (λ1, S) ∼ (λ2, (λ2I −T )−1) then S is the inverse of λ1I −T . Here, I denotes

the identity operator.

Let us denote by ℜ̃ the set of all the equivalence classes induced by ∼. For

Z ∈ ℜ̃, we define its resolvent set

ρ(Z) = {λ ∈ C | there exists a z ∈ A: (λ, z) ∈ Z}.
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Also, if (λ, z) ∈ Z, we write z = R(λ, Z). The spectrum set is the complement in

C of the resolvent set [1].

Now let Λ ⊆ C. We say that {J(λ)}λ∈Λ ⊆ A is a family of pseudoresolvents

over Λ [2], if for all λ1, λ2 ∈ Λ we have

J(λ1)− J(λ2) = (λ2 − λ1)J(λ1)J(λ2) = (λ2 − λ1)J(λ2)J(λ1).

For example, if A = C, Λ = C\{0} and J(λ) = λ−1, then {J(λ)}λ∈Λ is a family of

pseudoresolvents. Note also that if {J(λ)}λ∈Λ is a family of pseudoresolvents then

(λ1, J(λ1)) ∼ (λ2, J(λ2)), for all λ1, λ2 ∈ Λ. Hence, all the pairs (λ, J(λ)) ∈ Λ×A

lie in the same equivalence class Z0 ∈ ℜ̃, ρ(Z0) ⊇ Λ and J(λ) = R(λ, Z0), for all

λ ∈ Λ.

In what follows, we provide an answer to the following question:

In which conditions is a family of pseudoresolvents over C trivially zero?

As a consequence we will recover a classical result in functinal analysis about

the spectrum of a linear bounded operator on a Banach space.

2. The Main Result — Application. We first prove the following

Lemma. Let {J(λ)}λ∈Λ be a family of pseudoresolvents over the open and

unbounded set Λ such that

(C1) ‖J(λ1)‖ ‖J(λ2)‖ ≤ M‖J(λ1)J(λ2)‖, for all λ1, λ2 ∈ C (M is some posi-

tive constant); then there exists an open and bounded set Λ0 ⊆ Λ such that

{‖J(λ)‖}λ∈Λ\Λ0
is a bounded subset of [0,∞).

Proof. Let λ1, λ2 ∈ Λ. We have

‖J(λ1)‖+ ‖J(λ2)‖ ≥ ‖J(λ1)− J(λ2)‖ = |λ1 − λ2| ‖J(λ1)J(λ2)‖

≥ |λ1 − λ2|
M

‖J(λ1)‖ ‖J(λ2)‖.

Let l = lim sup|λ|→∞‖J(λ)‖ ∈ [0,∞]. We wish to show that l < ∞. Assume by

way of contradiction that this is not the case, i.e., l = ∞. Fix λ2 ∈ Λ such that

‖J(λ2)‖ > 2 (if no such λ2 exists, then ‖J(λ)‖ ≤ 2 for all λ ∈ Λ and the conslusion

of the lemma trivially holds, with Λ0 = ∅). Our assumption on l implies that there
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exists λ1 ∈ Λ such that both |λ1 −λ2| > M and ‖J(λ1)‖ > ‖J(λ2)‖. Consider now
k = ‖J(λ1)‖/‖J(λ2)‖ > 1. Using now the above inequality, we obtain

(k + 1)‖J(λ2)‖ = ‖J(λ1)‖+ ‖J(λ2)‖ ≥ |λ1 − λ2|
M

‖J(λ1)‖ ‖J(λ2)‖

> k‖J(λ1)‖ ‖J(λ2)‖ > 2k‖J(λ2)‖.

Hence, k + 1 > 2k, or k < 1, a contradiction. Thus, l < ∞, which implies the

desired conclusion.

The main result is given by the following proposition.

Proposition 1. If the family of pseudoresolvents {J(λ)}λ∈C satisfies the condi-

tions

(C1) ‖J(λ1)‖ ‖J(λ2)‖ ≤ M‖J(λ1)J(λ2)‖, for all λ1, λ2 ∈ C (M is some positive

constant);

(C2) C ∋ λ 7→ J(λ) ∈ A is continuous, then {J(λ)}λ∈C = {0}.

Proof. The definition of the pseudoresolvent and (C2) show that

C ∋ λ 7→ J(λ) ∈ A

is holomorphic and J ′(λ) = −J2(λ), for all λ ∈ C. The previous lemma shows

that {‖J(λ)‖}λ∈C is bounded on the exterior of an open ball. The same condition

(C2) shows that this set is bounded on this ball. Thus, the holomorphic map C

∋ λ 7→ J(λ) ∈ A is also bounded on C. Using Liouville’s theorem [3] we conclude

that this map must be constant, and since its limit at infinity is zero, this constant

must be zero itself. This completes the proof of our proposition.

Let now X be a Banach space and A = B(X ) be the Banach algebra of linear

bounded operators onX (with the operatorial norm). Note that the resolvent family

of any linear bounded operator is a particular case of a family of pseudoresolvents.

Proposition 2. The spectrum of any linear bounded operator T ∈ A is

nonempty.

Proof. By way of contradiction, assume that the spectrum is empty, i.e., ρ(T ) =

C. Let us show that the resolvent family of the operator T satisfies the condition
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(C1) of Proposition 1. More exactly, we will prove that for any M > 1 the following

inequality holds:

(6) ‖R(λ1, T )‖ ‖R(λ2, T )‖ ≤ M‖R(λ1, T )R(λ2, T )‖,

where {R(λ, T ) = (λI − T )−1}λ∈C is the resolvent family of the operator T and

λ1, λ2 ∈ Λ =

{

z ∈ C | |z| >
√
M + 1√
M − 1

‖T ‖
}

.

Indeed, since

‖(λI − T )‖ ‖R(λ, T )‖ ≤ |λ|+ ‖T ‖
|λ| − ‖T ‖ <

√
M, λ ∈ Λ,

we have

‖(λ1I − T )(λ2I − T )‖ ‖R(λ1, T )‖ ‖R(λ2, T )‖ ≤ (
√
M)2 = M, λ1, λ2 ∈ Λ.

Hence,

‖R(λ1, T )R(λ2, T )‖ ≥ 1

‖(λ1I − T )(λ2I − T )‖ ≥ ‖R(λ1, T )‖ ‖R(λ2, T )‖
M

,

which proves (6). It is known, however, that the map

C ∋ λ 7→ R(λ, T ) ∈ A

is continuous. Using the above lemma, we conclude that the resolvent fam-

ily {R(λ, T )}λ∈C is bounded on C\Λ0, where Λ0 is an open and bounded sub-

set of C. Thus, the resolvent family is bounded on the exterior of the ball

B(0, R) ⊇ B(0,
√
M+1√
M−1

) ∪ Λ0. From this point on, an argument similar to the

one in Proposition 1 shows that {R(λ, T )}λ∈C = {0}, a condradiction. The proof

is complete.

Corollary. Under the hypotheses of Proposition 1, the family of pseudoresol-

vents {J(λ)}λ∈C cannot be the resolvent family of any linear and bounded operator.

Remark. It can be shown that the spectrum of any linear bounded operator is

a compact set as well. For more details see [3].
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