## PSEUDORESOLVENTS IN BANACH ALGEBRAS

Árpád Bényi and Bryan Dawson


#### Abstract

We give a sufficient condition for a family of pseudoresolvents in a Banach algebra to be trivially zero. As an important consequence, we provide an alternate proof of the classical result that the spectrum of any linear bounded operator on a Banach space is nonempty. The proofs are elementary, requiring only a basic knowledge of real and complex analysis.


1. Notation and Preliminaries. Let A denote a complex Banach Algebra, i.e., $\mathbf{A}$ is a linear space over the field of complex numbers $\mathbf{C}$ endowed with a complete norm $\|\cdot\|$ and a product $\mathbf{A} \times \mathbf{A} \ni(x, y) \mapsto x y \in \mathbf{A}$ such that the following properties hold:
(1) $(x y) z=x(y z)$ (associativity),
(2) $x(y+z)=x y+x z$ and $(y+z) x=y z+z x$ (distributivity),
(3) $(\alpha x)(\beta y)=(\alpha \beta)(x y)$,
(4) $\|x y\| \leq\|x\|\|y\|$,
(5) There exists an $e \in \mathbf{A}$ such that $x e=e x=x$ and $\|e\|=1$,
for all $x, y \in \mathbf{A}$ and $\alpha, \beta \in \mathbf{C}$. The condition (5) on the unit is sometimes omitted from the definition of a Banach algebra. However, there is no loss of generality in this omission, since the Banach algebras without a unit can be endowed with one in a standard way; for more details, see [3].

We say that two pairs $(\alpha, x),(\beta, y) \in \mathbf{C} \times \mathbf{A}$ are equivalent, and write $(\alpha, x) \sim$ $(\beta, y)$, if the following equalities hold:

$$
(\alpha, x) \sim(\beta, y) \Longleftrightarrow x-y=(\beta-\alpha) x y=(\beta-\alpha) y x
$$

For example, if $T$ is a bounded linear operator on some Banach space, we have

$$
\left(\lambda_{1},\left(\lambda_{1} I-T\right)^{-1}\right) \sim\left(\lambda_{2},\left(\lambda_{2} I-T\right)^{-1}\right)
$$

and if $\left(\lambda_{1}, S\right) \sim\left(\lambda_{2},\left(\lambda_{2} I-T\right)^{-1}\right)$ then $S$ is the inverse of $\lambda_{1} I-T$. Here, $I$ denotes the identity operator.

Let us denote by $\tilde{\Re}$ the set of all the equivalence classes induced by $\sim$. For $Z \in \tilde{\Re}$, we define its resolvent set

$$
\rho(Z)=\{\lambda \in \mathbf{C} \mid \text { there exists a } z \in \mathbf{A}:(\lambda, z) \in Z\} .
$$

Also, if $(\lambda, z) \in Z$, we write $z=R(\lambda, Z)$. The spectrum set is the complement in $\mathbf{C}$ of the resolvent set [1].

Now let $\Lambda \subseteq \mathbf{C}$. We say that $\{J(\lambda)\}_{\lambda \in \Lambda} \subseteq \mathbf{A}$ is a family of pseudoresolvents over $\Lambda[2]$, if for all $\lambda_{1}, \lambda_{2} \in \Lambda$ we have

$$
J\left(\lambda_{1}\right)-J\left(\lambda_{2}\right)=\left(\lambda_{2}-\lambda_{1}\right) J\left(\lambda_{1}\right) J\left(\lambda_{2}\right)=\left(\lambda_{2}-\lambda_{1}\right) J\left(\lambda_{2}\right) J\left(\lambda_{1}\right)
$$

For example, if $\mathbf{A}=\mathbf{C}, \Lambda=\mathbf{C} \backslash\{0\}$ and $J(\lambda)=\lambda^{-1}$, then $\{J(\lambda)\}_{\lambda \in \Lambda}$ is a family of pseudoresolvents. Note also that if $\{J(\lambda)\}_{\lambda \in \Lambda}$ is a family of pseudoresolvents then $\left(\lambda_{1}, J\left(\lambda_{1}\right)\right) \sim\left(\lambda_{2}, J\left(\lambda_{2}\right)\right)$, for all $\lambda_{1}, \lambda_{2} \in \Lambda$. Hence, all the pairs $(\lambda, J(\lambda)) \in \Lambda \times \mathbf{A}$ lie in the same equivalence class $Z_{0} \in \tilde{\Re}, \rho\left(Z_{0}\right) \supseteq \Lambda$ and $J(\lambda)=R\left(\lambda, Z_{0}\right)$, for all $\lambda \in \Lambda$.

In what follows, we provide an answer to the following question:
In which conditions is a family of pseudoresolvents over $\mathbf{C}$ trivially zero?
As a consequence we will recover a classical result in functinal analysis about the spectrum of a linear bounded operator on a Banach space.
2. The Main Result - Application. We first prove the following

Lemma. Let $\{J(\lambda)\}_{\lambda \in \Lambda}$ be a family of pseudoresolvents over the open and unbounded set $\Lambda$ such that
(C1) $\left\|J\left(\lambda_{1}\right)\right\|\left\|J\left(\lambda_{2}\right)\right\| \leq M\left\|J\left(\lambda_{1}\right) J\left(\lambda_{2}\right)\right\|$, for all $\lambda_{1}, \lambda_{2} \in \mathbf{C}(M$ is some positive constant); then there exists an open and bounded set $\Lambda_{0} \subseteq \Lambda$ such that $\{\|J(\lambda)\|\}_{\lambda \in \Lambda \backslash \Lambda_{0}}$ is a bounded subset of $[0, \infty)$.

Proof. Let $\lambda_{1}, \lambda_{2} \in \Lambda$. We have

$$
\begin{aligned}
\left\|J\left(\lambda_{1}\right)\right\|+\left\|J\left(\lambda_{2}\right)\right\| & \geq\left\|J\left(\lambda_{1}\right)-J\left(\lambda_{2}\right)\right\|=\left|\lambda_{1}-\lambda_{2}\right|\left\|J\left(\lambda_{1}\right) J\left(\lambda_{2}\right)\right\| \\
& \geq \frac{\left|\lambda_{1}-\lambda_{2}\right|}{M}\left\|J\left(\lambda_{1}\right)\right\|\left\|J\left(\lambda_{2}\right)\right\|
\end{aligned}
$$

Let $l=\lim \sup _{|\lambda| \rightarrow \infty}\|J(\lambda)\| \in[0, \infty]$. We wish to show that $l<\infty$. Assume by way of contradiction that this is not the case, i.e., $l=\infty$. Fix $\lambda_{2} \in \Lambda$ such that $\left\|J\left(\lambda_{2}\right)\right\|>2$ (if no such $\lambda_{2}$ exists, then $\|J(\lambda)\| \leq 2$ for all $\lambda \in \Lambda$ and the conslusion of the lemma trivially holds, with $\Lambda_{0}=\emptyset$ ). Our assumption on $l$ implies that there
exists $\lambda_{1} \in \Lambda$ such that both $\left|\lambda_{1}-\lambda_{2}\right|>M$ and $\left\|J\left(\lambda_{1}\right)\right\|>\left\|J\left(\lambda_{2}\right)\right\|$. Consider now $k=\left\|J\left(\lambda_{1}\right)\right\| /\left\|J\left(\lambda_{2}\right)\right\|>1$. Using now the above inequality, we obtain

$$
\begin{aligned}
(k+1)\left\|J\left(\lambda_{2}\right)\right\| & =\left\|J\left(\lambda_{1}\right)\right\|+\left\|J\left(\lambda_{2}\right)\right\| \geq \frac{\left|\lambda_{1}-\lambda_{2}\right|}{M}\left\|J\left(\lambda_{1}\right)\right\|\left\|J\left(\lambda_{2}\right)\right\| \\
& >k\left\|J\left(\lambda_{1}\right)\right\|\left\|J\left(\lambda_{2}\right)\right\|>2 k\left\|J\left(\lambda_{2}\right)\right\|
\end{aligned}
$$

Hence, $k+1>2 k$, or $k<1$, a contradiction. Thus, $l<\infty$, which implies the desired conclusion.

The main result is given by the following proposition.
Proposition 1. If the family of pseudoresolvents $\{J(\lambda)\}_{\lambda \in \mathbf{C}}$ satisfies the conditions
(C1) $\left\|J\left(\lambda_{1}\right)\right\|\left\|J\left(\lambda_{2}\right)\right\| \leq M\left\|J\left(\lambda_{1}\right) J\left(\lambda_{2}\right)\right\|$, for all $\lambda_{1}, \lambda_{2} \in \mathbf{C}$ ( $M$ is some positive constant);
(C2) $\mathbf{C} \ni \lambda \mapsto J(\lambda) \in \mathbf{A}$ is continuous, then $\{J(\lambda)\}_{\lambda \in \mathbf{C}}=\{0\}$.
Proof. The definition of the pseudoresolvent and (C2) show that

$$
\mathbf{C} \ni \lambda \mapsto J(\lambda) \in \mathbf{A}
$$

is holomorphic and $J^{\prime}(\lambda)=-J^{2}(\lambda)$, for all $\lambda \in \mathbf{C}$. The previous lemma shows that $\{\|J(\lambda)\|\}_{\lambda \in \mathbf{C}}$ is bounded on the exterior of an open ball. The same condition (C2) shows that this set is bounded on this ball. Thus, the holomorphic map $\mathbf{C}$ $\ni \lambda \mapsto J(\lambda) \in \mathbf{A}$ is also bounded on $\mathbf{C}$. Using Liouville's theorem [3] we conclude that this map must be constant, and since its limit at infinity is zero, this constant must be zero itself. This completes the proof of our proposition.

Let now $X$ be a Banach space and $\mathbf{A}=\mathcal{B}(\mathcal{X})$ be the Banach algebra of linear bounded operators on $X$ (with the operatorial norm). Note that the resolvent family of any linear bounded operator is a particular case of a family of pseudoresolvents.

Proposition 2. The spectrum of any linear bounded operator $T \in \mathbf{A}$ is nonempty.

Proof. By way of contradiction, assume that the spectrum is empty, i.e., $\rho(T)=$ C. Let us show that the resolvent family of the operator $T$ satisfies the condition
(C1) of Proposition 1. More exactly, we will prove that for any $M>1$ the following inequality holds:
(6) $\left\|R\left(\lambda_{1}, T\right)\right\|\left\|R\left(\lambda_{2}, T\right)\right\| \leq M\left\|R\left(\lambda_{1}, T\right) R\left(\lambda_{2}, T\right)\right\|$,
where $\left\{R(\lambda, T)=(\lambda I-T)^{-1}\right\}_{\lambda \in \mathbf{C}}$ is the resolvent family of the operator $T$ and

$$
\lambda_{1}, \lambda_{2} \in \Lambda=\left\{z \in \mathbf{C}| | z \left\lvert\,>\frac{\sqrt{M}+1}{\sqrt{M}-1}\|T\|\right.\right\}
$$

Indeed, since

$$
\|(\lambda I-T)\|\|R(\lambda, T)\| \leq \frac{|\lambda|+\|T\|}{|\lambda|-\|T\|}<\sqrt{M}, \lambda \in \Lambda
$$

we have

$$
\left\|\left(\lambda_{1} I-T\right)\left(\lambda_{2} I-T\right)\right\|\left\|R\left(\lambda_{1}, T\right)\right\|\left\|R\left(\lambda_{2}, T\right)\right\| \leq(\sqrt{M})^{2}=M, \lambda_{1}, \lambda_{2} \in \Lambda
$$

Hence,

$$
\left\|R\left(\lambda_{1}, T\right) R\left(\lambda_{2}, T\right)\right\| \geq \frac{1}{\left\|\left(\lambda_{1} I-T\right)\left(\lambda_{2} I-T\right)\right\|} \geq \frac{\left\|R\left(\lambda_{1}, T\right)\right\|\left\|R\left(\lambda_{2}, T\right)\right\|}{M}
$$

which proves (6). It is known, however, that the map

$$
\mathbf{C} \ni \lambda \mapsto R(\lambda, T) \in \mathbf{A}
$$

is continuous. Using the above lemma, we conclude that the resolvent family $\{R(\lambda, T)\}_{\lambda \in \mathbf{C}}$ is bounded on $\mathbf{C} \backslash \Lambda_{0}$, where $\Lambda_{0}$ is an open and bounded subset of $\mathbf{C}$. Thus, the resolvent family is bounded on the exterior of the ball $B(0, R) \supseteq B\left(0, \frac{\sqrt{M}+1}{\sqrt{M}-1}\right) \cup \Lambda_{0}$. From this point on, an argument similar to the one in Proposition 1 shows that $\{R(\lambda, T)\}_{\lambda \in \mathbf{C}}=\{0\}$, a condradiction. The proof is complete.

Corollary. Under the hypotheses of Proposition 1, the family of pseudoresolvents $\{J(\lambda)\}_{\lambda \in \mathbf{C}}$ cannot be the resolvent family of any linear and bounded operator.

Remark. It can be shown that the spectrum of any linear bounded operator is a compact set as well. For more details see [3].

## References

1. D. Gaşpar, "A Commutativity Property of the Pseudoresolvent," Stud. Cerc. Math., 20, 1968, 189-190.
2. A. Pazy, Semigroups of Linear Operators and Applications to PDE's, SpringerVerlag, New York, 1983.
3. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

Árpád Bényi<br>Department of Mathematics<br>University of Kansas<br>Lawrence, KS 66045<br>email: benyi@math.ukans.edu<br>Bryan Dawson<br>Department of Mathematics<br>Union University<br>Jackson, TN 38305<br>email: ldawson@uu.edu

