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A NEW GENERALIZATION OF SHANIN’S NOTION

of R0 TOPOLOGICAL SPACES

M. Caldas, E. Hatir, and S. Jafari

Abstract. In this paper, we introduce and investigate some weak separation

axioms by using the notions of (Λ, α)-open sets and the (Λ, α)-closure operator.

1. Introduction. In 1943, N. A. Shanin [8] offered a new weak separation

axiom called R0 to the world of general topology. In 1961, A. S. Davis [2] rediscov-

ered this axiom and established some properties of topological spaces endowed with

it. Later on several topologists further investigated R0 topological spaces [3,4,5,6].

The notion of α-open set was introduced by O. Nj̊astad [7] in 1965. Since then it

has been investigated in different respects in the literature. Quite recently Caldas,

et. al. [1] introduced and studied the notions of (Λ, α)-open sets, (Λ, α)-closed sets,

and the (Λ, α)-closure operator. This paper deals with some new low separation

axioms by utilizing (Λ, α)-open and (Λ, α)-closed sets. There is no doubt that low

separation axioms play a very important role in general topology. Indeed, there

are lots of research papers which deal with different low separation axioms and also

many topologists worldwide are doing research in this area. It is the aim of this

paper to offer some new types of low separation axioms by using (Λ, α)-open sets

and (Λ, α)-closure operator.

In this paper, by (X, τ) and (Y, σ) (or X and Y ) we always mean topological

spaces. Let A be a subset of X . The subset A of the topological space (X, τ) is

called α-open (originally called α-sets) [7] if A ⊆ Int(Cl(Int(A))). The complement

of a α-open set is called α-closed. By αO(X, τ) (respectively αC(X, τ)), we denote

the family of all α-open (respectively α-closed) sets of (X, τ). Observe that α-open

sets form a topology, and also α-openness does not imply openness in the underlying

topology. Let C denote the standard “middle thirds” Cantor set in the unit interval

[0, 1] with the standard topology, and let x ∈ C. Then, [0, 1] − {C − {x}} would

be an α-open set. The intersection of all α-closed sets containing A is called the

α-closure of A, denoted by Clα(A). A subset A is also α-closed if and only if

A = Clα(A). A set U in a topological space (X, τ) is a α-neighborhood [7] of a

point x if U contains an α-open set V such that x ∈ V .
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Remark 1.1.

(i) It is shown in [7] that αO(X, τ) is a topology on X and τ ⊂ αO(X, τ).

(ii) Clearly open sets are α-open but one easily finds in the real line with the usual

topology α-open sets that are not open.

Lemma 1.2. Let A be a subset of a topological space (X, τ).

(1) Clα(A) = ∩{F ∈ αC(X, τ) | A ⊂ F}.

(2) Clα(A) is α-closed, that is Clα(Clα(A)) = Clα(A).

Definition 1. Let A be a subset of a topological space (X, τ). A subset Λα(A)

is defined as follows: Λα(A) = ∩{O ∈ αO(X, τ) | A ⊂ O} and A is called a Λα-set

if A = Λα(A) [1].

Definition 2. Let A be a subset of a topological space (X, τ).

(i) A is called a (Λ, α)-closed set [1] if A = T ∩C, where T is a Λα-set and C is an

α-closed set. The complement of a (Λ, α)-closed set is called (Λ, α)-open. We

denoted the collection of all (Λ, α)-open sets (respectively (Λ, α)-closed sets)

by ΛαO(X, τ) (respectively by ΛαC(X, τ)).

(ii) A point x ∈ X is called a (Λ, α)-cluster point of A [1] if for every (Λ, α)-open

set U of X containing x we have A∩U 6= ∅. The set of all (Λ, α)-cluster points

of A is called the (Λ, α)-closure of A and is denoted by A(Λ,α).

Lemma 1.3 Let A and B be subsets of a topological space (X, τ). For the

(Λ, α)-closure, the following properties hold [1].

(1) A ⊂ A(Λ,α).

(2) A(Λ,α) = ∩{F | A ⊂ F and F is (Λ, α)-closed}.

(3) If A ⊂ B, then A(Λ,α) ⊂ B(Λ,α).

(4) A is (Λ, α)-closed if and only if A = A(Λ,α).

(5) A(Λ,α) is (Λ, α)-closed.

2. Sober Λα-R0 Topological Spaces. A. S. Davis [2] introduced the notion

of R0-axiom which in some aspects is more natural than the T0-axiom. In this

section we introduce the concept of sober Λα-R0 topological space and we show

that sober Λα-R0 and R0 are independent of each other.

Lemma 2.1. Let A be a subset of a space X . Then the following hold.

(1) If A is α-closed, then A is (Λ, α)-closed.

(2) If A is (Λ, α)-closed, then A = Λα(A) ∩ A(Λ,α).

(3) If Ai is (Λ, α)-closed for each i ∈ I, then ∩i∈IAi is (Λ, α)-closed.

(4) If Ai is (Λ, α)-open for each i ∈ I, then ∪i∈IAi is (Λ, α)-open.
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Proof. (1) It is sufficient to observe that A = X ∩A where the whole set X is

a Λα-set.

(2) Let A be (Λ, α)-closed, then there exists a Λα-set T and a α-closed set C such

that A = T ∩ C. By A ⊂ T , we have A ⊂ Λα(A) ⊂ Λα(T ) = T , and also by

A ⊂ C, A ⊂ A(Λ,α) ⊂ C(Λ,α) = C. Now, A ⊂ Λα(A)∩A(Λ,α) ⊂ T ∩C = A. Hence,

A = Λα(A) ∩ A(Λ,α).

(3) Suppose that Ai is (Λ, α)-closed for each i ∈ I. Then, for each i ∈ I there

exists a Λα-set Ti and a α-closed set Ci such that Ai = Ti ∩ Ci. Now,
⋂

i∈I Ai =
⋂

i∈I(Ti ∩ Ci) = (
⋂

i∈I Ti) ∩ (
⋂

i∈I Ci). By Lemma 2.4 of [1],
⋂

i∈I Ti is a Λα-set

and
⋂

i∈I Ci is α-closed. This shows that
⋂

i∈I Ai is (Λ, α)-closed.

(4) Follows from (3).

Definition 3. Let (X, τ) be a topological space, A ⊂ X and x ∈ X . Then

(i) The Λα-kernel of A, denoted by ΛαKer(A), is defined to be the set

ΛαKer(A) = ∩{G ∈ ΛαO(X, τ) | A ⊂ G}.

(ii) < x >= {x}(Λ,α) ∩ ΛαKer({x}).

Lemma 2.2. Let (X, τ) be a topological space and x ∈ X . Then

ΛαKer(A) = {x ∈ X | {x}(Λ,α) ∩A 6= ∅}.

Proof. Let x ∈ ΛαKer(A) and suppose {x}(Λ,α) ∩ A = ∅. Hence, x /∈

X − {x}(Λ,α) which is a (Λ, α)-open set containing A. This is absurd, since x ∈

ΛαKer(A). Consequently, {x}(Λ,α) ∩A 6= ∅. Next, let x such that {x}(Λ,α) ∩A 6= ∅

and suppose that x /∈ ΛαKer(A). Then, there exists a (Λ, α)-open set D containing

A and x /∈ D. Let y ∈ {x}(Λ,α) ∩ A. Hence, D is a (Λ, α)-neighborhood of y which

does not contain x. But this contradicts x ∈ Kerα(A) and the claim follows.

Lemma 2.3. If A,B ⊂ X , then

(1) A ⊂ B implies ΛαKer(A) ⊂ ΛαKer(B).

(2) ΛαKer(ΛαKer(A)) = ΛαKer(A).

Lemma 2.4. Let (X, τ) be a topological space and x, y ∈ X . Then y ∈

ΛαKer({x}) if and only if x ∈ {y}(Λ,α).

Proof. Let y /∈ ΛαKer({x}). Then there exists a (Λ, α)-open set V containing

x such that y /∈ V . Hence, x /∈ {y}(Λ,α). The converse is similarly shown.

A subset Bx of a topological space X is said to be (Λ, α)-neighborhood of a

point x ∈ X if there exists a (Λ, α)-open set U such that x ∈ U ⊂ Bx.

Lemma 2.5. A subset of a topological space X is (Λ, α)-open in X if and only

if it contains a (Λ, α)-neighborhood of each of its points.
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Proposition 2.6. If (X, τ) is a topological space and A ⊂ X . Then

(1) ΛαKer(A) = {x ∈ X/{x}(Λ,α) ∩ A 6= ∅}.

(2) For each x ∈ X , ΛαKer(< x >) = ΛαKer({x}).

(3) For each x ∈ X , {< x >}(Λ,α) = {x}(Λ,α).

(4) For each (Λ, α)-open set U ⊂ X , if x ∈ U then < x >⊂ U .

(5) For each (Λ, α)-closed set F ⊂ X , if x ∈ F then < x >⊂ F .

Proof. (1) Let x ∈ ΛαKer(A) and suppose {x}(Λ,α) ∩ A = ∅. Then, x /∈

X\{x}(Λ,α) which is a (Λ, α)-open set containing A. This is impossible, since x ∈

ΛαKer(A). Consequently, {x}(Λ,α) ∩ A 6= ∅. Next, let x ∈ X such that {x}(Λ,α) ∩

A 6= ∅ and suppose that x /∈ ΛαKer(A). Then, there exists a (Λ, α)-open set U

containing A and x /∈ U . Let y ∈ {x}(Λ,α) ∩ A. Hence, U is a (Λ, α)-neighborhood

of y which does not contain x. But this contradicts x ∈ ΛαKer(A).

(2) Follows easily from Definition 2 and Lemma 2.4.

(3) The proof is quite similar to that of (2).

(4) Since x ∈ U and U is a (Λ, α)-open set, we have that ΛαKer({x}) ⊂ U . Hence,

< x >⊂ U .

(5) Since x ∈ F and F is a (Λ, α)-closed set, we have that < x >= {x}(Λ,α) ∩

ΛαKer({x}) ⊂ {x}(Λ,α) ⊂ F .

Lemma 2.7. The following statements are equivalent for any points x and y in

a topological space (X, τ).

(1) ΛαKer({x}) 6= ΛαKer({y}).

(2) {x}(Λ,α) 6= {y}(Λ,α).

Proof. (1) → (2): Suppose that ΛαKer({x}) 6= ΛαKer({y}), then there

exists a point z in X such that z ∈ ΛαKer({x}) and z /∈ ΛαKer({y}). From

z ∈ ΛαKer({x}) it follows that {x} ∩ {z}(Λ,α) 6= ∅ which implies x ∈ {z}(Λ,α).

By z /∈ ΛαKer({y}), we have {y} ∩ {z}(Λ,α) = ∅. Since x ∈ {z}(Λ,α) , {x}(Λ,α) ⊂

{z}(Λ,α) and {y} ∩ {x}(Λ,α) = ∅. Therefore, it follows that {x}(Λ,α) 6= {y}(Λ,α).

Now ΛαKer({x}) 6= ΛαKer({y}) implies that {x}(Λ,α) 6= {y}(Λ,α).

(2) → (1): Suppose that {x}(Λ,α) 6= {y}(Λ,α). Then there exists a point z in X

such that z ∈ {x}(Λ,α) and z /∈ {y}(Λ,α). It follows that there exists a (Λ, α)-open

set containing z and therefore x but not y, namely, y /∈ ΛαKer({x}) and thus,

ΛαKer({x}) 6= ΛαKer({y}).

Definition 4. A topological space (X, τ) is said to be sober Λα-R0 if

∩x∈X{x}(Λ,α) = ∅.
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Theorem 2.8. A topological space (X, τ) is sober Λα-R0 if and only if

ΛαKer({x}) 6= X for every x ∈ X .

Proof. Suppose that the space (X, τ) is sober Λα-R0. Assume that there

is a point y in X such that ΛαKer({y}) = X . Then y /∈ O which O is some

proper (Λ, α)-open subset of X . This implies that y ∈ ∩x∈X{x}(Λ,α). But this is a

contradiction. Now assume that ΛαKer({x}) 6= X for every x ∈ X . If there exists

a point y in X such that y ∈ ∩x∈X{x}
(Λ,α), then every (Λ, α)-open set containing

y must contain every point of X . This implies that the space X is the unique

(Λ, α)-open set containing y. Hence, ΛαKer({y}) = X which is a contradiction.

Therefore, (X, τ) is sober Λα-R0.

Recall that a topological space (X, τ) is said to be R0 [2] if every open set

contains the closure of each of its singletons.

Example 2.9. Let (X, τ) be a topological space such that X = {a, b, c} and

τ = {∅, {a}, X}. Observe that (X, τ) is sober Λα-R0, but it is not R0.

Example 2.10. Let (X, τ) with τ = {∅, X}. Clearly (X, τ) is not sober Λα-R0,

but it is R0.

Examples 2.9 and 2.10 show that sober Λα-R0 and R0 are independent of each

other.

Definition 5. A function f :X → Y is always called Λα-closed if the image of

every (Λ, α)-closed subset of X is (Λ, α)-closed in Y .

Theorem 2.11. If f :X → Y is an injective always Λα-closed function and X is

sober Λα-R0, then Y is sober α-R0.

Proof. Straightforward.

Theorem 2.12. If the topological space X is sober Λα-R0 and Y is any topo-

logical space, then the product X × Y is sober Λα-R0.

Proof. By showing that ∩(x,y)∈X×Y {x, y}
(Λ,α) = ∅ we are done. We have

∩(x,y)∈X×Y {x, y}
(Λ,α) ⊆ ∩(x,y)∈X×Y {x}

(Λ,α) × {y}(Λ,α) = ∩x∈X{x}(Λ,α) ×

∩y∈Y {y}(Λ,α) ⊆ ∅ × Y = ∅.

3. Λα-R0 Topological Spaces. In this section (Λ, α)-open sets and (Λ, α)-

closure operator are used to define a new separation axiom analogous to R0- axiom

and we obtain several characterizations of it.

Definition 6. A topological space (X, τ) is said to be a Λα-R0 space if every

(Λ, α)-open set contains the (Λ, α)-closure of each of its singletons.
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The next result will give the characterization of the Λα-R0 space in terms of

the (Λ, α)-closure of points.

Theorem 3.1. For a topological space (X, τ), the following properties are equiv-

alent.

(1) (X, τ) is a Λα-R0 space.

(2) For any F ∈ ΛαC(X, τ), x /∈ F implies that there exist U ∈ ΛαO(X, τ), such

that F ⊂ U and x /∈ U .

(3) For any F ∈ ΛαC(X, τ), x /∈ F implies F ∩{x}(Λ,α) = ∅.

(4) For any distinct points x and y of X , either {x}(Λ,α) = {y}(Λ,α) or {x}(Λ,α) ∩

{y}(Λ,α) = ∅.

Proof. (1) → (2): Let F ∈ ΛαC(X, τ) and x /∈ F . Then by (1) {x}(Λ,α) ⊂

X\F . Set U = X\{x}(Λ,α), then U ∈ ΛαO(X, τ), F ⊂ U and x /∈ U .

(2)→ (3): Let F ∈ ΛαC(X, τ) and x /∈ F . There exists U ∈ ΛαO(X, τ) such that

F ⊂ U and x /∈ U . Since U ∈ ΛαO(X, τ), U ∩ {x}(Λ,α) = ∅ and F ∩{x}(Λ,α) = ∅.

(3) → (4): Assume that {x}(Λ,α) 6= {y}(Λ,α) for distinct points x, y ∈ X . There

exists z ∈ {x}(Λ,α) such that z /∈ {y}(Λ,α) (or z ∈ {y}(Λ,α) such that z /∈ {x}(Λ,α)).

There exists V ∈ ΛαO(X, τ) such that y /∈ V and z ∈ V ; hence x ∈ V . Therefore,

we have x /∈ {y}(Λ,α). By (3), we obtain {x}(Λ,α) ∩ {y}(Λ,α) = ∅. The proof for

otherwise case is similar.

(4)→ (1): Let V ∈ ΛαO(X, τ) and x ∈ V . For each y /∈ V, x 6= y and x /∈ {y}(Λ,α).

This shows that {x}(Λ,α) 6= {y}(Λ,α). By (4), {x}(Λ,α) ∩ {y}(Λ,α) = ∅ for each

y ∈ X\V and hence,

{x}(Λ,α) ∩

(

⋃

y∈X\V

{y}(Λ,α)

)

= ∅.

On the other hand, since V ∈ ΛαO(X, τ) and y ∈ X\V , we have {y}(Λ,α) ⊂ X\V .

Therefore,

X\V =
⋃

y∈X\V

{y}(Λ,α).

Therefore, we obtain (X\V ) ∩ {x}(Λ,α) = ∅ and {x}(Λ,α) ⊂ V . Hence, (X, τ) is a

Λα-R0 space.

Corollary 3.2. A topological space (X, τ) is a Λα-R0 space if and only if for

any x and y in X, {x}(Λ,α) 6= {y}(Λ,α) implies {x}(Λ,α) ∩ {y}(Λ,α) = ∅.
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Proposition 3.3. A topological space (X, τ) is Λα-R0 if and only if for

any points x and y and X , ΛαKer({x}) 6= ΛαKer({y}) implies ΛαKer({x}) ∩

ΛαKer({y}) = ∅.

Proof. Suppose that (X, τ) is a Λα-R0 space. Thus by Lemma 2.7, for any

points x and y in X if ΛαKer({x}) 6= ΛαKer({y}) then {x}(Λ,α) 6= {y}(Λ,α). Now

we prove that ΛαKer({x}) ∩ ΛαKer({y}) = ∅. Assume that z ∈ ΛαKer({x}) ∩

ΛαKer({y}). By z ∈ ΛαKer({x}), it follows that x ∈ {z}(Λ,α). Since x ∈ {x}(Λ,α),

by Corollary 3.2 {x}(Λ,α) = {z}(Λ,α). Similarly, we have {y}(Λ,α) = {z}(Λ,α) =

{x}(Λ,α). This is a contradiction. Therefore, we have ΛαKer({x})∩ΛαKer({y}) =

∅.

Conversely, let (X, τ) be a topological space such that for any points x and

y in X , ΛαKer({x}) 6= ΛαKer({y}) implies ΛαKer({x}) ∩ ΛαKer({y}) = ∅. If

{x}(Λ,α) 6= {y}(Λ,α), then by Lemma 2.7, ΛαKer({x}) 6= ΛαKer({y}). Therefore,

ΛαKer({x}) ∩ ΛαKer({y}) = ∅ which implies {x}(Λ,α) ∩ {y}(Λ,α) = ∅. Because

z ∈ {x}(Λ,α) implies that x ∈ ΛαKer({z}), ΛαKer({x}) ∩ ΛαKer({z}) 6= ∅. By

hypothesis, we therefore have ΛαKer({x}) = ΛαKer({z}). Then z ∈ {x}(Λ,α) ∩

{y}(Λ,α) implies that {x}(Λ,α) = {z}(Λ,α) = {y}(Λ,α). This is a contradiction.

Therefore, {x}(Λ,α) ∩ {y}(Λ,α) = ∅ and by Corollary 3.2, (X, τ) is a Λα-R0 space.

Proposition 3.4. For a topological space (X, τ), the following properties are

equivalent.

(1) (X, τ) is a Λα-R0 space.

(2) For any nonempty set A and G ∈ ΛαO(X, τ) such that A∩G 6= ∅, there exists

F ∈ ΛαC(X, τ) such that A ∩ F 6= ∅ and F ⊂ G.

(3) Any G ∈ ΛαO(X, τ), G = ∪{F ∈ ΛαC(X, τ) | F ⊂ G}.

(4) Any F ∈ ΛαC(X, τ), F = ∩{G ∈ ΛαO(X, τ) | F ⊂ G} (i.e., F = ΛαKer(F )).

(5) For any x ∈ X , {x}(Λ,α) ⊂ ΛαKer({x}).

Proof. (1) → (2): Let A be a nonempty set of X and G ∈ ΛαO(X, τ) such

that A ∩G 6= ∅. There exists x ∈ A ∩G. Since x ∈ G ∈ ΛαO(X, τ), {x}(Λ,α) ⊂ G.

Set F = {x}(Λ,α), then F ∈ ΛαC(X, τ), F ⊂ G and A ∩ F 6= ∅.

(2) → (3): Let G ∈ ΛαO(X, τ), then G ⊃ ∪{F ∈ ΛαC(X, τ) | F ⊂ G}. Let x

be any point of G. There exists F ∈ ΛαC(X, τ) such that x ∈ F and F ⊂ G.

Therefore, we have x ∈ F ⊂ ∪{F ∈ ΛαC(X, τ) | F ⊂ G} and hence, G = ∪{F ∈

ΛαC(X, τ) | F ⊂ G}.

(3)→ (4): This is obvious.

(4)→ (5): It follows from (4) and Lemma 1.3.
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(5) → (1): Let G ∈ ΛαO(X, τ) and x ∈ G. Let y ∈ ΛαKer({x}), then x ∈

{y}(Λ,α) and y ∈ G. This implies that ΛαKer({x}) ⊂ G. Therefore, we obtain

x ∈ {x}(Λ,α) ⊂ ΛαKer({x}) ⊂ G. This shows that (X, τ) is a Λα-R0 space.

Corollary 3.5. For a topological space (X, τ), the following properties are

equivalent.

(1) (X, τ) is a Λα-R0 space.

(2) {x}(Λ,α) = ΛαKer({x}) for all x ∈ X .

Proof. (1) → (2): Suppose that (X, τ) is a Λα-R0 space. By Propo-

sition 3.4, {x}(Λ,α) ⊂ ΛαKer({x}) for each x ∈ X . Let y ∈ ΛαKer({x}),

then {x}(Λ,α) ∩ {y}(Λ,α) 6= ∅. By Corollary 3.2 we obtain {x}(Λ,α) = {y}(Λ,α).

Therefore, y ∈ {x}(Λ,α) and hence, ΛαKer({x}) ⊂ {x}(Λ,α). This shows that

{x}(Λ,α) = ΛαKer({x}).

(2)→ (1): Proposition 3.4.

Corollary 3.6. Let X be a Λα-R0 topological space. For any x ∈ X if

< x >= {x}, then {x}(Λ,α) = {x}.

Proof. It is a consequence of Corollary 3.5.

Proposition 3.7. For a topological space (X, τ), the following properties are

equivalent.

(1) (X, τ) is a Λα-R0 space.

(2) x ∈ {y}(Λ,α) if and only if y ∈ {x}(Λ,α).

Proof. (1)→ (2): Let X be Λα-R0. Let x ∈ {y}(Λ,α) and U be any (Λ, α)-open

set such that y ∈ U . Hence, ΛαKer({y}) ⊂ U . Since x ∈ {y}(Λ,α) and (X, τ) is

Λα-R0, by Corollary 3.5, x ∈ ΛαKer({y}) ⊂ U . Therefore, every (Λ, α)-open set

which contains y contains x. Hence, y ∈ {x}(Λ,α).

(2) → (1): Let U be a (Λ, α)-open set and x ∈ U . If y /∈ U , then x /∈ {y}(Λ,α)

and hence, y /∈ {x}(Λ,α). This implies that {x}(Λ,α) ⊂ U . Hence, (X, τ) is a Λα-R0

space.

Proposition 3.8. For a topological space (X, τ), the following properties are

equivalent.

(1) X is a Λα-R0 space.

(2) < x >= {x}(Λ,α) for each x ∈ X .

(3) < x > is (Λ, α)-closed for each x ∈ X .

Proof. (1) → (2): By Corollary 3.5, {x}(Λ,α) = ΛαKer({x}) for each x ∈ X .

Hence, {x}(Λ,α) = {x}(Λ,α) ∩ ΛαKer({x}) =< x >.
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(2)→ (1): Since {x}(Λ,α) =< x > for each x ∈ X , we have {x}(Λ,α) ⊂ ΛαKer({x}).

By Proposition 3.4(5), X is Λα-R0.

(2)←→ (3): It is consequence of Lemma 2.1.

4. Λα-R1 Topological Spaces and a Question. A. S. Davis [2] also

introduced the notion of R1 topological spaces which is strictly weaker than T2.

Now we offer a new generalization of R1 by utilizing the notions of (Λ, α)-open sets

and (Λ, α)-closure operator.

Definition 7. A topological space (X, τ) is said to be Λα-R1 if for x, y in X

with {x}(Λ,α) 6= {y}(Λ,α), there exists disjoint (Λ, α)-open sets U and V such that

{x}(Λ,α) is a subset of U and {y}(Λ,α) is a subset of V .

Proposition 4.1. If (X, τ) is Λα-R1, then (X, τ) is Λα-R0.

Proof. Let U be (Λ, α)-open and let x ∈ U . If y /∈ U , then since x /∈ {y}(Λ,α),

{x}(Λ,α) 6= {y}(Λ,α) and there exists a (Λ, α)-open Vy such that {y}(Λ,α) ⊂ Vy and

x /∈ Vy, which implies y /∈ {x}(Λ,α). Thus, {x}(Λ,α) ⊂ U . Hence, (X, τ) is Λα-R0.

Recall that a topological space (X, τ) is said to be R1 [2] if for x, y in X with

Cl({x}) 6= Cl({y}), there exists disjoint open sets U and V such that Cl({x}) is a

subset of U and Cl({y}) is a subset of V .

Example 4.2. Let (X, τ) be a topological space such that X = {a, b, c} and

τ = {∅, {a}, X}. Clearly, the family of all (Λ, α)-closed sets consists of

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},X}. We have the following for the space (X, τ).

1) (X, τ) is Λα-R0, but it is not R0.

2) (X, τ) is Λα-R1, but it is not R1.

Question. Characterize Λα-R1 spaces. Is there any example showing that a

topological space is Λα-R0 but not Λα-R1?
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