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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

145. [2004, 58] Proposed by José Luis Dı́az-Barrero, Universidad Politècnica
de Cataluña, Barcelona, Spain.

Let Fn denote the nth Fibonacci number (F0 = 0, F1 = 1, and Fn = Fn−1 +
Fn−2 for n ≥ 2) and let Ln denote the nth Lucas number (L0 = 2, L1 = 1, and
Ln = Ln−1 + Ln−2 for n ≥ 2). Prove that

Fn+1 >
1

3

(

LLn

n

FFn

n

)
1

Ln−Fn

holds for all positive integer n ≥ 2.

Solution by the proposer. It is well known [1] that for a positive integrable func-
tion defined on the interval [a, b], the integral analogue of the AM-GM inequality
is given by

A(f) =
1

b− a

∫ b

a

f(x) dx ≥ exp

(

1

b− a

∫ b

a

ln f(x) dx

)

= G(f). (1)

Setting f(x) = x, a = Fn, and b = Ln into (1), yields

1

Ln − Fn

∫ Ln

Fn

x dx ≥ exp

(

1

Ln − Fn

∫ Ln

Fn

lnx dx

)

.

Note that for all n ≥ 2, Ln − Fn > 0. Evaluating the preceding integrals and after
simplification, we obtain

Fn + Ln

2
≥ exp

(

1

Ln − Fn
ln

(

LLn

n

FFn

n

)

− 1

)

= exp

(

ln

[

1

e

(

LLn

n

FFn

n

)]
1

Ln−Fn

)

. (2)
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Since Fn + Ln = 2Fn+1, as can be easily proved by mathematical induction, then
(2) becomes

Fn+1 ≥ 1

e

(

LLn

n

FFn

n

)
1

Ln−Fn

>
1

3

(

LLn

n

FFn

n

)
1

Ln−Fn

and we are done.
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Also solved by Said Amghibech, Sainte Foy (qc), Canada. One partial solution
was also received.

146. [2004, 58] Proposed by Russell Euler and Jawad Sadek, Northwest
Missouri State University, Maryville, Missouri.

Find all (x, y) with 0 ≤ x < 2π and 0 ≤ y < 2π such that

cos2 y = 2(sinx+ cosx cos y − 1).

Solution by Mihai Cipu, Romanian Academy, Bucharest, Romania; Said
Amghibech, Sainte Foy (qc), Canada; Ovidiu Furdui, Western Michigan Univer-
sity, Kalamazoo, Michigan; and the proposer (independently). All the solutions were
essentially the same. The given equation can be written as

(sinx− 1)2 + (cos x− cos y)2 = 0.

Since the sum of two nonnegative real numbers can be 0 if and only if each of the
terms is 0,

sinx = 1 and cosx = cos y.

That is,
sinx = 1 and cos y = 0.

Therefore,

(x, y) =

(

π

2
,
π

2

)

or (x, y) =

(

π

2
,
3π

2

)

.
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147. [2004, 59] Proposed by Zdravko F. Starc, Vrs̆ac, Serbia and Montenegro.

Let Fn be the Fibonacci numbers defined by F1 = 1, F2 = 1, and Fn =
Fn−1 + Fn−2 for n ≥ 3. Prove that

(F 4
1 + F 4

n+1)(F
4
2 + F 4

n+2) · · · (F 4
n + F 4

2n) <

(

24n−1

n

)2n

.

Solution I by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michi-
gan. The following inequality is valid:

a4 + b4 ≤ (a2 + b2)2 for all a, b ∈ R.

Thus,

(F 4
1 + F 4

n+1)(F
4
2 + F 4

n+2) · · · (F 4
n + F 4

2n) <

(

(F 2
1 + F 2

n+1) · · · (F 2
n + F 2

2n)

)2

.

On the other hand we get by the AM-GM inequality that

(F 2
1 + F 2

n+1) · · · (F 2
n + F 2

2n) ≤
(

F 2
1 + F 2

2 + · · ·+ F 2
2n

n

)n

.

Therefore, we obtain that

(F 4
1 + F 4

n+1) · · · (F 4
n + F 4

2n) ≤
(

F 2
1 + F 2

2 + · · ·+ F 2
2n

n

)2n

.

It suffices to show that

F 2
1 + F 2

2 + · · ·+ F 2
2n ≤ 24n−1.

But observe that
F 2
1 + · · ·+ F 2

2n = F2nF2n+1.
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Also by Binet’s formula

F2nF2n+1 =
1

5
(α2n − β2n)(α2n+1 − β2n+1)

=
1

5
(α4n+1 − (αβ)2n · β − (βα)2n · α+ β4n+1).

Here,

α =
1 +

√
5

2
and β =

1−
√
5

2
.

Since

αβ = −1, α+ β = 1, β4n+1 = β4n · β < 0, and α =
1 +

√
5

2
< 2,

we have that

F2nF2n+1 =
1

5
(α4n+1 − α− β + β4n+1)

<
1

5
· α4n+1 <

24n+1

5
=

4

5
· 24n−1 < 24n−1.

The result follows.

Solution II by Mihai Cipu, Romanian Academy, Bucharest, Romania. We shall
prove a stronger inequality: the product on the left hand side is less than 2(9n

2+n)/2.
Let us denote a = (1 +

√
5)/2 and b = (1 −

√
5)/2. Since by Binet’s formula

Fn = (an = bn)/(a− b) for any n, it is easy to prove by induction that Fn < 2an−2

for n ≥ 2. Therefore, for n ≥ 1 we have

n
∏

i=1

Fn+i <

n
∏

i=1

2an+i−2 = 2na3(n
2
−n)/2.
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Hence,

n
∏

i=1

(F 4
i + F 4

n+i) <

n
∏

i=1

2F 4
n+i < 25na6(n

2
−n).

¿From a < 5/3 < 23/4 it follows that the given product is less than

25n+9(n2
−n)/2 = 2(9n

2+n)/2.

To show that this upper bound is better than that given in the problem, we have
to prove

n22(9n+1)/2 < 28n−2,

or n4 < 27n−5 for n ≥ 2, which is readily obtained by induction, since 128n4 >
(n+ 1)4.

Also solved by Said Amghibech, Sainte Foy (qc), Canada and the proposer.

148. [2004, 59] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Show that

∞
∏

i=1

(

cos x
4i + cos 3x

4i

2

)

=

∞
∏

i=1

(

1 + 2 cos 2x
5i + 2 cos 4x

5i

5

)

,

where x is any real or complex number.

Solution I by Mihai Cipu, Romanian Academy, Bucharest, Romania. Both sides
of the proposed equality are 1 if x = 0, so in the following we shall assume x 6= 0.

As

cos
x

4i
+ cos

3x

4i
= 2 cos

x

4i
cos

2x

4i

and

n
∏

i=1

cos 2i−1x =
sin 2nx

2n sinx
,
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we have

Pn :=
n
∏

i=1

(

cos x
4i + cos 3x

4i

2

)

=
n
∏

i=1

cos
x

22i
cos

x

22i−1
=

sinx

4n sin x
4n

.

Hence, the product on the left hand side of the proposed equality is

lim
n→∞

Pn = lim
n→∞

sinx

4n sin x
4n

=
sinx

x
lim
n→∞

x
4n

sin x
4n

=
sinx

x
.

In the right hand side we shall use the identity

1 + 2 cos 2x+ 2 cos 4x =
sinx+ sin 3x− sinx+ sin 5x− sin 3x

sinx
=

sin 5x

sinx
.

Therefore,

Qn :=

n
∏

i=1

sin x
5i−1

5 sin x
5i

=
sinx

5n sin x
5n

and

n
∏

i=1

(

1 + 2 cos 2x
5i + 2 cos 4x

5i

5

)

= lim
n→∞

Qn = lim
n→∞

sinx

5n sin x
5n

=
sinx

x
.
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Solution II by Larry Eifler, University of Missouri - Kansas City, Kansas
City, Missouri. We establish a more general result since this will better illustrate
the patterns underlying the result. If A and B are complex numbers, then

2 sinA cosB = sin(A+B)− sin(B −A).

Let m be a positive integer. Using the above identity, we see that

sin θ

(∑m
k=1 cos(2k − 1)θ

m

)

=

∑m
k=1[sin 2kθ − sin(2k − 2)θ]

2m

=
sin 2mθ

2m

and

sin θ

(

1 + 2
∑m

k=1 cos 2kθ

2m+ 1

)

=
sin θ +

∑m
k=1[sin(2k + 1)θ − sin(2k − 1)θ]

2m+ 1

=
sin(2m+ 1)θ

2m+ 1
.

Let x be a complex number. If sinx 6= 0, then

n
∏

i=1

(

∑m
k=1 cos

(2k−1)x
(2m)i

m

)

=

n
∏

i=1

(

sin 2mx
(2m)i

2m sin x
(2m)i

)

=
sinx

(2m)n sin x
(2m)n

and

n
∏

i=1

(1 + 2
∑m

k=1 cos
2kx

(2m+1)i

2m+ 1

)

=

n
∏

i=1

( sin (2m+1)x
(2m+1)i

(2m+ 1) sin x
(2m+1)i

)

=
sinx

(2m+ 1)n sin x
(2m+1)n

.
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Thus,

n
∏

i=1

(

∑m
k=1 cos

(2k−1)x
(2m)i

m

)

=
sinx

x

x
(2m)n

sin x
(2m)n

if sin
x

(2m)n
6= 0

since the functions in the above formula are continuous at x if sin x
(2m)n 6= 0.

Similarly,

n
∏

i=1

(

1 + 2
∑m

k=1 cos
2kx

(2m+1)i

2m+ 1

)

=
sinx

x

x
(2m+1)n

sin x
(2m+1)n

if sin
x

(2m+ 1)n
6= 0.

Hence,

∞
∏

i=1

(

∑m
k=1 cos

(2k−1)x
(2m)i

m

)

=
sinx

x
=

∞
∏

i=1

(

1 + 2
∑m

k=1 cos
2kx

(2m+1)i

2m+ 1

)

for x 6= 0

since limθ→0
sin θ
θ = 1. The two infinite products in the above formula are clearly

equal at x = 0.

Also solved by Said Amghibech, Sainte Foy (qc), Canada and the proposer. A
partial solution was also received.


