SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
145. [2004, 58] Proposed by José Luis Díaz-Barrero, Universidad Politècnica de Cataluña, Barcelona, Spain.

Let F_{n} denote the nth Fibonacci number $\left(F_{0}=0, F_{1}=1\right.$, and $F_{n}=F_{n-1}+$ F_{n-2} for $n \geq 2$) and let L_{n} denote the nth Lucas number ($L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$). Prove that

$$
F_{n+1}>\frac{1}{3}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)^{\frac{1}{L_{n}-F_{n}}}
$$

holds for all positive integer $n \geq 2$.
Solution by the proposer. It is well known [1] that for a positive integrable function defined on the interval $[a, b]$, the integral analogue of the AM-GM inequality is given by

$$
\begin{equation*}
A(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \geq \exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)=G(f) \tag{1}
\end{equation*}
$$

Setting $f(x)=x, a=F_{n}$, and $b=L_{n}$ into (1), yields

$$
\frac{1}{L_{n}-F_{n}} \int_{F_{n}}^{L_{n}} x d x \geq \exp \left(\frac{1}{L_{n}-F_{n}} \int_{F_{n}}^{L_{n}} \ln x d x\right)
$$

Note that for all $n \geq 2, L_{n}-F_{n}>0$. Evaluating the preceding integrals and after simplification, we obtain

$$
\begin{align*}
\frac{F_{n}+L_{n}}{2} & \geq \exp \left(\frac{1}{L_{n}-F_{n}} \ln \left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)-1\right) \\
& =\exp \left(\ln \left[\frac{1}{e}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)\right]^{\frac{1}{L_{n}-F_{n}}}\right) \tag{2}
\end{align*}
$$

Since $F_{n}+L_{n}=2 F_{n+1}$, as can be easily proved by mathematical induction, then (2) becomes

$$
F_{n+1} \geq \frac{1}{e}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)^{\frac{1}{L_{n}-F_{n}}}>\frac{1}{3}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)^{\frac{1}{L_{n}-F_{n}}}
$$

and we are done.

References

1. G. H. Hardy, J. E. Littlewood, \& G. Pólya, Inequalities, Cambridge University, Press, UK, 1997, pp. 137-138.

Also solved by Said Amghibech, Sainte Foy (qc), Canada. One partial solution was also received.
146. [2004, 58] Proposed by Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri.

Find all (x, y) with $0 \leq x<2 \pi$ and $0 \leq y<2 \pi$ such that

$$
\cos ^{2} y=2(\sin x+\cos x \cos y-1)
$$

Solution by Mihai Cipu, Romanian Academy, Bucharest, Romania; Said Amghibech, Sainte Foy (qc), Canada; Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan; and the proposer (independently). All the solutions were essentially the same. The given equation can be written as

$$
(\sin x-1)^{2}+(\cos x-\cos y)^{2}=0
$$

Since the sum of two nonnegative real numbers can be 0 if and only if each of the terms is 0 ,

$$
\sin x=1 \quad \text { and } \quad \cos x=\cos y
$$

That is,

$$
\sin x=1 \text { and } \cos y=0
$$

Therefore,

$$
(x, y)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \text { or } \quad(x, y)=\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)
$$

147. [2004, 59] Proposed by Zdravko F. Starc, Vršac, Serbia and Montenegro.

Let F_{n} be the Fibonacci numbers defined by $F_{1}=1, F_{2}=1$, and $F_{n}=$ $F_{n-1}+F_{n-2}$ for $n \geq 3$. Prove that

$$
\left(F_{1}^{4}+F_{n+1}^{4}\right)\left(F_{2}^{4}+F_{n+2}^{4}\right) \cdots\left(F_{n}^{4}+F_{2 n}^{4}\right)<\left(\frac{2^{4 n-1}}{n}\right)^{2 n}
$$

Solution I by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan. The following inequality is valid:

$$
a^{4}+b^{4} \leq\left(a^{2}+b^{2}\right)^{2} \text { for all } a, b \in \mathbb{R}
$$

Thus,

$$
\left(F_{1}^{4}+F_{n+1}^{4}\right)\left(F_{2}^{4}+F_{n+2}^{4}\right) \cdots\left(F_{n}^{4}+F_{2 n}^{4}\right)<\left(\left(F_{1}^{2}+F_{n+1}^{2}\right) \cdots\left(F_{n}^{2}+F_{2 n}^{2}\right)\right)^{2}
$$

On the other hand we get by the AM-GM inequality that

$$
\left(F_{1}^{2}+F_{n+1}^{2}\right) \cdots\left(F_{n}^{2}+F_{2 n}^{2}\right) \leq\left(\frac{F_{1}^{2}+F_{2}^{2}+\cdots+F_{2 n}^{2}}{n}\right)^{n}
$$

Therefore, we obtain that

$$
\left(F_{1}^{4}+F_{n+1}^{4}\right) \cdots\left(F_{n}^{4}+F_{2 n}^{4}\right) \leq\left(\frac{F_{1}^{2}+F_{2}^{2}+\cdots+F_{2 n}^{2}}{n}\right)^{2 n}
$$

It suffices to show that

$$
F_{1}^{2}+F_{2}^{2}+\cdots+F_{2 n}^{2} \leq 2^{4 n-1}
$$

But observe that

$$
F_{1}^{2}+\cdots+F_{2 n}^{2}=F_{2 n} F_{2 n+1}
$$

Also by Binet's formula

$$
\begin{aligned}
F_{2 n} F_{2 n+1} & =\frac{1}{5}\left(\alpha^{2 n}-\beta^{2 n}\right)\left(\alpha^{2 n+1}-\beta^{2 n+1}\right) \\
& =\frac{1}{5}\left(\alpha^{4 n+1}-(\alpha \beta)^{2 n} \cdot \beta-(\beta \alpha)^{2 n} \cdot \alpha+\beta^{4 n+1}\right)
\end{aligned}
$$

Here,

$$
\alpha=\frac{1+\sqrt{5}}{2} \text { and } \beta=\frac{1-\sqrt{5}}{2} .
$$

Since

$$
\alpha \beta=-1, \quad \alpha+\beta=1, \quad \beta^{4 n+1}=\beta^{4 n} \cdot \beta<0, \quad \text { and } \alpha=\frac{1+\sqrt{5}}{2}<2,
$$

we have that

$$
\begin{aligned}
F_{2 n} F_{2 n+1} & =\frac{1}{5}\left(\alpha^{4 n+1}-\alpha-\beta+\beta^{4 n+1}\right) \\
& <\frac{1}{5} \cdot \alpha^{4 n+1}<\frac{2^{4 n+1}}{5}=\frac{4}{5} \cdot 2^{4 n-1}<2^{4 n-1}
\end{aligned}
$$

The result follows.

Solution II by Mihai Cipu, Romanian Academy, Bucharest, Romania. We shall prove a stronger inequality: the product on the left hand side is less than $2^{\left(9 n^{2}+n\right) / 2}$.

Let us denote $a=(1+\sqrt{5}) / 2$ and $b=(1-\sqrt{5}) / 2$. Since by Binet's formula $F_{n}=\left(a^{n}=b^{n}\right) /(a-b)$ for any n, it is easy to prove by induction that $F_{n}<2 a^{n-2}$ for $n \geq 2$. Therefore, for $n \geq 1$ we have

$$
\prod_{i=1}^{n} F_{n+i}<\prod_{i=1}^{n} 2 a^{n+i-2}=2^{n} a^{3\left(n^{2}-n\right) / 2}
$$

Hence,

$$
\prod_{i=1}^{n}\left(F_{i}^{4}+F_{n+i}^{4}\right)<\prod_{i=1}^{n} 2 F_{n+i}^{4}<2^{5 n} a^{6\left(n^{2}-n\right)}
$$

¿From $a<5 / 3<2^{3 / 4}$ it follows that the given product is less than

$$
2^{5 n+9\left(n^{2}-n\right) / 2}=2^{\left(9 n^{2}+n\right) / 2} .
$$

To show that this upper bound is better than that given in the problem, we have to prove

$$
n^{2} 2^{(9 n+1) / 2}<2^{8 n-2},
$$

or $n^{4}<2^{7 n-5}$ for $n \geq 2$, which is readily obtained by induction, since $128 n^{4}>$ $(n+1)^{4}$.

Also solved by Said Amghibech, Sainte Foy (qc), Canada and the proposer.
148. [2004, 59] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Show that

$$
\prod_{i=1}^{\infty}\left(\frac{\cos \frac{x}{4^{i}}+\cos \frac{3 x}{4^{i}}}{2}\right)=\prod_{i=1}^{\infty}\left(\frac{1+2 \cos \frac{2 x}{5^{i}}+2 \cos \frac{4 x}{5^{i}}}{5}\right)
$$

where x is any real or complex number.
Solution I by Mihai Cipu, Romanian Academy, Bucharest, Romania. Both sides of the proposed equality are 1 if $x=0$, so in the following we shall assume $x \neq 0$.

As

$$
\cos \frac{x}{4^{i}}+\cos \frac{3 x}{4^{i}}=2 \cos \frac{x}{4^{i}} \cos \frac{2 x}{4^{i}}
$$

and

$$
\prod_{i=1}^{n} \cos 2^{i-1} x=\frac{\sin 2^{n} x}{2^{n} \sin x},
$$

we have

$$
P_{n}:=\prod_{i=1}^{n}\left(\frac{\cos \frac{x}{4^{i}}+\cos \frac{3 x}{4^{i}}}{2}\right)=\prod_{i=1}^{n} \cos \frac{x}{2^{2 i}} \cos \frac{x}{2^{2 i-1}}=\frac{\sin x}{4^{n} \sin \frac{x}{4^{n}}} .
$$

Hence, the product on the left hand side of the proposed equality is

$$
\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} \frac{\sin x}{4^{n} \sin \frac{x}{4^{n}}}=\frac{\sin x}{x} \lim _{n \rightarrow \infty} \frac{\frac{x}{4^{n}}}{\sin \frac{x}{4^{n}}}=\frac{\sin x}{x} .
$$

In the right hand side we shall use the identity

$$
1+2 \cos 2 x+2 \cos 4 x=\frac{\sin x+\sin 3 x-\sin x+\sin 5 x-\sin 3 x}{\sin x}=\frac{\sin 5 x}{\sin x} .
$$

Therefore,

$$
Q_{n}:=\prod_{i=1}^{n} \frac{\sin \frac{x}{5^{i-1}}}{5 \sin \frac{x}{5^{i}}}=\frac{\sin x}{5^{n} \sin \frac{x}{5^{n}}}
$$

and

$$
\prod_{i=1}^{n}\left(\frac{1+2 \cos \frac{2 x}{5^{i}}+2 \cos \frac{4 x}{5^{i}}}{5}\right)=\lim _{n \rightarrow \infty} Q_{n}=\lim _{n \rightarrow \infty} \frac{\sin x}{5^{n} \sin \frac{x}{5^{n}}}=\frac{\sin x}{x}
$$

Solution II by Larry Eifler, University of Missouri - Kansas City, Kansas City, Missouri. We establish a more general result since this will better illustrate the patterns underlying the result. If A and B are complex numbers, then

$$
2 \sin A \cos B=\sin (A+B)-\sin (B-A)
$$

Let m be a positive integer. Using the above identity, we see that

$$
\begin{aligned}
\sin \theta\left(\frac{\sum_{k=1}^{m} \cos (2 k-1) \theta}{m}\right) & =\frac{\sum_{k=1}^{m}[\sin 2 k \theta-\sin (2 k-2) \theta]}{2 m} \\
& =\frac{\sin 2 m \theta}{2 m}
\end{aligned}
$$

and

$$
\begin{aligned}
\sin \theta\left(\frac{1+2 \sum_{k=1}^{m} \cos 2 k \theta}{2 m+1}\right) & =\frac{\sin \theta+\sum_{k=1}^{m}[\sin (2 k+1) \theta-\sin (2 k-1) \theta]}{2 m+1} \\
& =\frac{\sin (2 m+1) \theta}{2 m+1}
\end{aligned}
$$

Let x be a complex number. If $\sin x \neq 0$, then

$$
\begin{aligned}
\prod_{i=1}^{n}\left(\frac{\sum_{k=1}^{m} \cos \frac{(2 k-1) x}{(2 m)^{i}}}{m}\right) & =\prod_{i=1}^{n}\left(\frac{\sin \frac{2 m x}{(2 m)^{i}}}{2 m \sin \frac{x}{(2 m)^{i}}}\right) \\
& =\frac{\sin x}{(2 m)^{n} \sin \frac{x}{(2 m)^{n}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\prod_{i=1}^{n}\left(\frac{1+2 \sum_{k=1}^{m} \cos \frac{2 k x}{(2 m+1)^{i}}}{2 m+1}\right) & =\prod_{i=1}^{n}\left(\frac{\sin \frac{(2 m+1) x}{(2 m+1)^{i}}}{(2 m+1) \sin \frac{x}{(2 m+1)^{i}}}\right) \\
& =\frac{\sin x}{(2 m+1)^{n} \sin \frac{x}{(2 m+1)^{n}}}
\end{aligned}
$$

Thus,

$$
\prod_{i=1}^{n}\left(\frac{\sum_{k=1}^{m} \cos \frac{(2 k-1) x}{(2 m)^{i}}}{m}\right)=\frac{\sin x}{x} \frac{\frac{x}{(2 m)^{n}}}{\sin \frac{x}{(2 m)^{n}}} \text { if } \sin \frac{x}{(2 m)^{n}} \neq 0
$$

since the functions in the above formula are continuous at x if $\sin \frac{x}{(2 m)^{n}} \neq 0$.
Similarly,

$$
\prod_{i=1}^{n}\left(\frac{1+2 \sum_{k=1}^{m} \cos \frac{2 k x}{(2 m+1)^{i}}}{2 m+1}\right)=\frac{\sin x}{x} \frac{\frac{x}{(2 m+1)^{n}}}{\sin \frac{x}{(2 m+1)^{n}}} \text { if } \sin \frac{x}{(2 m+1)^{n}} \neq 0
$$

Hence,

$$
\prod_{i=1}^{\infty}\left(\frac{\sum_{k=1}^{m} \cos \frac{(2 k-1) x}{(2 m)^{i}}}{m}\right)=\frac{\sin x}{x}=\prod_{i=1}^{\infty}\left(\frac{1+2 \sum_{k=1}^{m} \cos \frac{2 k x}{(2 m+1)^{i}}}{2 m+1}\right) \text { for } x \neq 0
$$

since $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$. The two infinite products in the above formula are clearly equal at $x=0$.

Also solved by Said Amghibech, Sainte Foy (qc), Canada and the proposer. A partial solution was also received.

