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ON THE COUNTERIDENTITY MATRIX

Iyad T. Abu-Jeib

Abstract. We make a comparison between the identity matrix and the coun-

teridentity matrix by studying the eigensystem of J + M , where J is the coun-

teridentity matrix and M is a structured matrix, with the goal of expressing this

system entirely in terms of the corresponding eigensystem of M . Also, properties

of some parametric families of the form J + ρM are studied.

1. Introduction. Properties of the sum of two matrices have been studied by

many mathematicians in many contexts with the objective of finding connections

between the eigensystem of the summands and the eigensystem of the sum. In

particular, the eigenvalues of the sum of the identity matrix and another matrix

is one of the first sums that one encounters in elementary linear algebra. A very

useful relative of the identity is the counteridentity J , which is obtained from the

identity by reversing the order of its columns. The question we pose is: how

closely is the eigensystem of the sum J + M related to that of the matrix M?

With no restrictions on M , it appears that little can be said about the connections

between these eigensystems. However, we show that if M is centrosymmetric,

skew-centrosymmetric, or diagonal, then the question has a simple explicit answer.

One consequence of our analysis is the construction of an analytic homotopy H(t),

0 ≤ t ≤ 1, in the space of diagonalizable matrices, between J = H(0) and any real

skew-symmetric skew-centrosymmetric matrix S = H(1) such that H(t) has only

real or pure imaginary eigenvalues for 0 ≤ t ≤ 1.

We begin with a discussion of the counteridentity matrix. By themain counter-

diagonal of a square matrix, we mean the positions which proceed diagonally from

the last entry in the first row to the first entry in the last row. The main counter-

diagonal is sometimes called the secondary diagonal or the main anti-diagonal. We

will simply say counterdiagonal when we refer to the main counterdiagonal.

Definition 1.1. The counteridentity matrix, denoted J , is the matrix whose

elements are all equal to zero except those on the counterdiagonal, which are all

equal to 1.

The counteridentity is sometimes called the exchange matrix or the anti-

identity matrix or the contra-identity matrix or the flip matrix.
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We denote the transpose of a matrix A by AT , the Hermitian/conjugate trans-

pose of A by AH , and the flip-transpose (reflection of the entries about the counter-

diagonal) by AF . As usual, I denotes the identity matrix. Recall that a matrix A is

persymmetric if AF = A, centrosymmetric if JAJ = A, and skew-centrosymmetric

if JAJ = −A. A matrix A is doubly skew if it is skew-symmetric and skew-

centrosymmetric. Thus, a matrix is symmetric persymmetric (such a matrix is

sometimes called doubly symmetric) if and only if it is symmetric centrosymmetric.

Similarly, a matrix is skew-symmetric persymmetric if and only if it is doubly skew.

We note that Toeplitz matrices are persymmetric. Hence, symmetric Toeplitz ma-

trices are symmetric centrosymmetric and skew-symmetric Toeplitz matrices are

doubly skew.

A vector x is called symmetric if Jx = x and skew-symmetric if Jx = −x. We

will denote the set of all n× 1 vectors that are either symmetric or skew-symmetric

by E .
Recall that the sum of the eigenvalues of a matrix A is equal to the trace of A,

denoted tr(A). We employ the notation ⌈x⌉ for the smallest integer greater than or

equal to x and ⌊x⌋ for the largest integer less than or equal to x. We will denote the

diagonal matrix whose diagonal elements are d1, d2, . . . , dn by diag(d1, d2, . . . , dn).

Here are some simple and easily verified properties of the counteridentity ma-

trix. We assume that all matrices in the first five parts are n× n.

1. J = [δi,n−i+1], where δi,j is the Kronecker delta.

2. JT = J = J−1.

3. det(J) = 1 if n mod 4 = 0 or 1 and det(J) = −1 if n mod 4 = 2 or 3.

4. AF = JAT J .

5. ⌊n
2
⌋ eigenvalues of J are equal to −1 and the remaining eigenvalues are equal

to 1.

6. If n is even, then the columns of the matrix

Q1 =
1√
2

[
I I
−J J

]
,
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where J and I are n/2 by n/2, form n orthonormal eigenvectors of the n× n

counteridentity. If n is odd, then the columns of the matrix

Q2 =
1√
2




I 0 I
0

√
2 0

−J 0 J


 ,

where J and I are ⌊n/2⌋ by ⌊n/2⌋, form n orthonormal eigenvectors of the n×n

counteridentity. We note here that Q1 and Q2 were used by some researchers

to block-diagonalize centrosymmetric matrices and derive results about them.

For more information, see [2]. We note that although the definition of Q1

stated in [2] is the transpose of Q1 as stated here, all proofs in that paper

correctly use Q1.

2. Centrosymmetric and Skew-Centrosymmetric Summands. In this

section we analyze the relationship between the eigenvalues/eigenvectors of J + S

and the eigenvalues/eigenvectors of S, where S is either centrosymmetric or skew-

centrosymmetric. (For basic facts about centrosymmetric matrices, see [4, 5].) The

proof of the following proposition is straightforward, and hence, it is omitted.

Proposition 2.1. Let S be an n× n nonzero centrosymmetric matrix, let γ be

the number of linearly independent eigenvectors of S, and let A = J + S. Then

(a) A and S share γ linearly independent eigenvectors that belong to E .
(b) If x is symmetric, then (λ, x) is an eigenpair of S if and only if (1 + λ, x) is an

eigenpair of A.

(c) If x is skew-symmetric, then (λ, x) is an eigenpair of S if and only if (−1+λ, x)

is an eigenpair of A.

Observe that the ±1’s in the preceding proposition are the eigenvalues of the

matrix J . If, in addition, S is also real symmetric, then the eigenvalues of S can

be ordered as λ1, λ2, . . . λn such that the eigenvalues of A are enumerated as

−1 + λ1,−1 + λ2, . . . ,−1 + λ⌊n/2⌋, 1 + λ⌊n/2⌋+1, . . . , 1 + λn.

Thus, the eigenvalues of J can be ordered as µ1, µ2, . . . , µn in such a way that

the eigenvalues of J + S are exactly µj + λj , j = 1, . . . , n, where the λj ’s are
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the eigenvalues of S. This is the best relationship between the eigenvalues of the

summands and the eigenvalues of the sum that we can hope for.

The situation with a skew-centrosymmetric summand S is not so clear as in

the centrosymmetric case. Nonetheless, the eigensystem of J + S can be largely

determined in terms of S.

Theorem 2.2. Let S be an n×n nonzero skew-centrosymmetric matrix and let

A = J + S. Then

(a) Every eigenvector of S is an eigenvector of A2.

(b) ±µ is an eigenvalue of S if and only if ±
√
µ2 + 1 is an eigenvalue of A.

(c) If, in addition, S is also skew-symmetric, then the eigenvalues of A are either

real or pure imaginary, and if A and S share an eigenvector, then S is singular

and 1 or −1 is an eigenvalue of A. Moreover, if (λ, x) is an eigenpair of A, then

(λ, Jx) is an eigenpair of AT , and if, in addition, S is also nonsingular, then

(−λ, Sx) is an eigenpair of AT .

Proof.

A2 = (S + J)(S + J) = S2 + SJ + JS + J2 = S2 + SJ − SJ + I = S2 + I

from which (a) follows. Furthermore, if λ is an eigenvalue of A, then λ2 = µ2 + 1,

for some eigenvalue µ of S. Thus, (b) is proved. Now if S is also skew-symmetric

and if λ is an eigenvalue of A, then λ2 = 1 + µ2, for some eigenvalue µ = bi of S,

where b ∈ R. Thus, λ2 = 1 − b2 and hence, λ = ±
√
1− b2. Therefore, λ is real

if and only if |b| ≤ 1 and pure imaginary if and only if |b| > 1. Now suppose that

(µ, x) is an eigenpair of S and (λ, x) is an eigenpair of A. Then

λx = Ax = Sx+ Jx = µx+ Jx.

Hence, Jx = (λ − µ)x. Thus, (λ − µ) is an eigenvalue of J , which implies either

λ = µ + 1, or λ = µ − 1. But now λ is either real or pure imaginary, and µ is

pure imaginary. This forces µ to be zero and λ to be 1 or −1. Finally, let (λ, x) be

an eigenpair of A. Then Sx + Jx = λx, which implies JSx + JJx = λJx. Thus,

(−S+J)Jx = λJx, which implies (λ, Jx) is an eigenpair of AT . (Note that Jx 6= 0

because J is nonsingular.) Now since SSx+SJx = λSx, we have (S−J)Sx = λSx.

If S is nonsingular, then Sx 6= 0, and hence, (λ, Sx) is an eigenpair of −AT .

In the case of the identity matrix, we have that I − S is invertible for any

skew-symmetric matrix S. This is the basis for the so-called Cayley transform
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S → (I−S)−1(I+S) which establishes a one-to-one correspondence between skew-

symmetric matrices and orthogonal matrices. Theorem 2.2 shows that a direct

analogue is not possible for the counteridentity J , since J − S may be singular.

Another application of this theorem is the following.

Corollary 2.3. Let S be an n×n nonzero doubly skew matrix and let A = J+S.

If, for every eigenvalue µ of S, |µ| <
√
2, then | det(A)| ≤ 1.

Proof. Let {µj}nj=1 be the eigenvalues of S, where µj = rji, 1 ≤ j ≤ n (rj ∈ R).

By Theorem 2.2, the eigenvalues {λj}nj=1 of A2 are given by λj = 1+µj
2 = 1− rj

2,

1 ≤ j ≤ n. Now since −
√
2 < rj <

√
2, it follows that −1 < λj ≤ 1, 1 ≤ j ≤ n.

Now recall that the determinant of A2 is equal to the product of its eigenvalues,

which implies the corollary.

Now let S be doubly skew and let A = J + S. Since S is diagonalizable, then

so is A2. It follows that A2 has no Jordan blocks of order greater than 1, so the

same is true for A. Therefore, A is diagonalizable. Note also that the eigenvalues

of A are real or pure imaginary, which enables us to make an interesting homotopy

construction.

Example 2.4. We construct an analytic homotopy H(t), 0 ≤ t ≤ 1, in the

(topological) space of diagonalizable matrices, between J = H(0) and any n × n

real doubly skew matrix S = H(1) such that H(t) has only real or pure imaginary

eigenvalues for 0 ≤ t ≤ 1. Specifically, define

H(t) = (1 − t)J + tS.

Clearly, H(0) = J and H(1) = S and H(t) is analytic in t. Furthermore, for

0 < t < 1, we have

H(t) = (1 − t)

(
J +

t

(1 − t)
S

)
.

Now 1
1−tH(t) is diagonalizable (which implies H(t) is diagonalizable) and by The-

orem 2.2 its eigenvalues are real or pure imaginary.

3. Diagonal Summands. In the following theorem and corollaries we exam-

ine diagonal updates of the counteridentity matrix. We also examine the eigenval-

ues of matrices with zeros everywhere except on the main diagonal and the main
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counterdiagonal and matrices with zeros everywhere except on the main counter-

diagonal.

Theorem 3.1. Let D1 = diag(d1, d2, . . . , dn) and D2 = diag(e1, e2, . . . , en) be

diagonal matrices, let A = D1 + JD2, and let

M =

{
di + dn−i+1 ±

√
(di + dn−i+1)2 + 4(eien−i+1 − didn−i+1)

2
, i = 1, 2, . . . ,

⌊
n

2

⌋}
.

Then if λ is an eigenvalue of A, then λ ∈ M if n is even, and λ ∈ M ∪{e⌈n

2
⌉+d⌈n

2
⌉}

if n is odd.

Proof. Let (λ, x) be an eigenpair of A and let x = [x1 x2 · · · xn]
T . We get the

equations:

eixn−i+1 = (λ− di)xi, i = 1, 2, . . . , n.

Notice that if n is even, then we can partition the above system into n
2
systems.

Each system consists of two equations of two variables xi and xn−i+1. Solving the

equations yields the result. If n is odd, then we have a similar situation. The only

difference is that we get an additional equation (the middle one) of one variable

which is x⌈n⌉.

Note that A in the previous theorem has zeros everywhere except possibly on

the main diagonal and the main counterdiagonal.

Corollary 3.2. Let D = diag(d1, d2, . . . , dn) be a diagonal matrix, let A =

J +D, and let

M =

{
di + dn+1−i ±

√
(di + dn+1−i)2 − 4(didn+1−i − 1)

2
, i = 1, 2, . . . ,

⌊
n

2

⌋}
.

Then if λ is an eigenvalue of A, then λ ∈ M if n is even, and λ ∈ M ∪ {1 + d⌈n

2
⌉}

if n is odd.

Proof. The proof follows directly from the previous theorem by taking D1 = D

and D2 = I.
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Corollary 3.3. Let D = diag(d1, d2, . . . , dn) be a diagonal matrix, let A = JD,

and let M = {±
√
didn+1−i, i = 1, 2, . . . , ⌊n

2
⌋}. If λ is an eigenvalue of A, then

λ ∈ M if n is even, and λ ∈ M ∪ {d⌈n

2
⌉} if n is odd.

Proof. The proof follows directly from Theorem 3.1 by taking D1 = 0 and

D2 = D.

Note that A in the previous corollary has zeros everywhere except possibly on

the counterdiagonal.

4. Rank One Summands. In this section, we examine rank one updates

of the counteridentity. In the case of a general rank one complex matrix of the

form uvH very little can be deduced about J + uvH . Indeed, if one perturbs J

slightly so that the resulting J̃ has simple eigenvalues, Anderson [3] shows that

the sum J̃ + uvH can have arbitrarily prescribed spectrum for suitable vectors u,

v. If one specializes to a rank one real matrix ρuuT , where ρ is a real number

and u a real vector, then the standard divide-and-conquer algorithm, together with

deflation [6] can be used to compute the eigensystem of the sum J+ρuuT , since J is

real symmetric. However, if explicit formulas are desired, one more specialization is

needed. We consider the case of a nonzero real symmetric vector u. It is harmless to

assume that u is a unit vector (uTu = 1) and we do so. Thus, we have a parametric

family of matrices Hρ = J + ρuuT .

First, we consider an analogous parametric family Pρ = I + ρuuT . The

eigenvalues of the rank one matrix ρuuT are ρ and 0, the latter with multiplic-

ity n − 1, and the corresponding eigenvectors of ρuuT form an orthonormal basis

u = u1, u2, . . . , un. Thus, one immediately obtains these standard facts:

(a) The eigenvectors of uuT are eigenvectors of Pρ.

(b) n− 1 eigenvalues of Pρ are equal to 1 and the remaining eigenvalue is equal to

1 + ρ.

(c) det(Pρ) = 1 + ρ.

(d) If ρ 6= −1, then Pρ is nonsingular and P−1
ρ = Pµ, where µ = −ρ

1+ρ .

In our setting, the analogous facts for the counteridentity turn out to be quite

similar.

Theorem 4.1. Let ρ be a real number, u an n × 1 unit symmetric real vector

and Hρ = J + ρuuT . Then

(a) The eigenvectors of uuT are eigenvectors of Hρ.
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(b) If n is odd (respectively, even), then n−1
2

(respectively, n
2
− 1) eigenvalues of

Hρ are equal to 1 and n−1
2

(respectively, n
2
) eigenvalues are equal to −1. The

remaining eigenvalue is 1 + ρ.

(c) det(Hρ) = (1 + ρ) if ⌊n
2
⌋ is even and it is equal to −(1 + ρ) if ⌊n

2
⌋ is odd.

(d) If ρ 6= −1, then H−1
ρ = Hσ, where σ = −ρ

1+ρ .

Proof. Let u = u1, u2, . . . , un be an orthonormal basis of eigenvectors of uuT

corresponding to eigenvalues 1, 0, . . . , 0, respectively. The vector u1 is unique up to

sign, and since uuT is real symmetric centrosymmetric, there are ⌈n/2⌉ orthonor-

mal symmetric eigenvectors and ⌊n/2⌋ orthonormal skew-symmetric eigenvectors

of uuT . The vector u = u1 is given to be symmetric. Therefore, of the remaining

eigenvectors, ⌈n/2⌉ − 1 are symmetric and ⌊n/2⌋ are skew-symmetric.

Now note that Hρu1 = (1+ρ)u1. If uj, j > 1, is a symmetric vector, we also see

that Hρuj = Juj + ρuuTuj = uj, while if uj is skew-symmetric, then Hρuj = −uj.

Parts (a) and (b) follow from these facts. Part (c) is immediate from (b). To prove

(d), note that JuuT = uuT = uuTJ and

HρHσ =
(
J + ρuuT

) (
J + σuuT

)

= J2 + ρuuTJ + JσuuT + ρσuuT

= I + (ρ+ σ + ρσ)uuT .

One can also prove the previous theorem by consideringH2
ρ = I+(2ρ+ρ2)uuT .

Remark. We note that the one parameter family {Pρ = I + ρuuT | ρ 6= −1}
forms a topological group. On the other hand, the corresponding one parameter

family for the counteridentity {Hρ = J + ρuuT | ρ 6= −1} has all the trappings of a

topological group except that the closure law fails.

For the case when u is skew-symmetric and for more general results about rank-

one perturbations of centrosymmetric matrices (note that J is centrosymmetric),

we refer the reader to [1].
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