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ON A TAXICAB DISTANCE ON A SPHERE

A. Bayar and R. Kaya

Abstract. In this work, we define a spherical taxicab distance on the surface

of a sphere in terms of well-known geographical latitude and longitude. Then we

study some properties of this distance function and give an analogue of the ruler

postulate. At the end, we give some connections between the spherical taxicab

circle and the spherical circles.

1. Introduction. At the beginning of the last century, a family of metrics

for plane geometries, including the taxicab metric, was published in [8]. Later,

taxicab plane geometry was introduced in [7] and developed in [5] using the taxicab

distance

|x1 − x2|+ |y1 − y2|

instead of the Euclidean distance

√
(x1 − x2)2 + (y1 − y2)2

between the points (x1, y1) and (x2, y2) in the coordinate plane.

A few problems related to the taxicab geometry have been studied and im-

proved by some authors [1, 2, 3, 6, 9, 10, 11, 12, 13, 15]. It is stated in [5] that

while the Euclidean geometry appears to be a good model of the natural world, the

taxicab geometry is a better model of the artificial urban world that man has built.

Since the surface of the world resembles the surface of a sphere more than the plane,

it comes to mind that the spherical taxicab geometry may be more meaningful than

plane geometry. Therefore, in this work, we give a taxicab distance on a surface of

a sphere and introduce spherical taxicab geometry.

2. The Spherical Distance Between Two Points On the Sphere. Let

u and v be latitude and longitude of a given point P on the sphere, respectively.

The ordered pair (u, v) is called the geographical coordinates of this point, where

−π
2

≤ u ≤ π
2

and −π ≤ v ≤ π. P is on the northern hemisphere if and only

if 0 ≤ u ≤ π
2
and P is on the southern hemisphere if and only if −π

2
≤ u < 0.
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Similarly, P is on the eastern hemisphere if and only if 0 ≤ v ≤ π and P is on the

western hemisphere if and only if −π < v < 0.

Thus, the North Pole is N = (−π
2
, 0). Now let P = (u1, v1) and Q = (u2,v2)

be any two distinct points on the sphere. Consider the spherical triangle NPQ.

(The closed geometric figure is formed on the surface of the sphere and is bounded

by intersecting minor arcs of three great circles as in Figure 1). The sides of the

spherical triangle NPQ on the unit sphere are the following circular arcs:

a = 6 POQ :=
⌢

PQ, b = 6 QON :=
⌢

QN and c = 6 PON :=
⌢

PN.

Figure 1.

The angles of the triangles NPQ are the spherical angles formed at the intersection

points N , P , and Q of two great circles of the sphere, equal to the angles between

their tangents at the point of intersection. It is known [14] that the following

connections between a, b, c and the spherical angles N̂ , P̂ , Q̂ of the spherical

triangle NPQ are valid:

cos a = cos b · cos c+ sin b · sin c · cosN

cos b = cos a · cos c+ sin a · sin c · cosP (1)

cos c = cos a · cos b+ sin a · sin b · cosQ
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Now, the arc length from P to Q is calculated from the first equation in (1) as

follows:

cos
⌢

PQ = cos
⌢

NP · cos
⌢

NQ+ sin
⌢

NP · sin
⌢

NQ · cos N̂ ,

where

N̂ =

{
|v1 − v2| , if |v1 − v2| ≤ π

2π − |v1 − v2| , if |v1 − v2| > π.

cos
⌢

PQ = cos

(
π

2
− u1

)
· cos

(
π

2
− u2

)
+ sin

(
π

2
− u1

)
· sin

(
π

2
− u2

)
· cos(v1 − v2)

and
⌢

PQ = arccos(sinu1 · sinu2 + cosu1 · cosu2 · cos(v1 − v2)). (2)

Thus, for the spherical arc length, dS(P,Q), that is the spherical distance from

P to Q on the sphere with radius r, one has

dS(P,Q) =
∣∣∣

⌢

PQ
∣∣∣ = r · arccos (sinu1 · sinu2 + cosu1 · cosu2 · cos [|v1 − v2|]) , (3)

where

[|v1 − v2|] :=

{
|v1 − v2| , if |v1 − v2| ≤ π

2π − |v1 − v2| , if |v1 − v2| > π .

3. The Taxicab Distance Between Two Points on Sphere.

Definition 1. Let P = (u1, v1) and Q = (u2, v2) be any two points with the

geographical coordinates on a sphere of radius r. Let C be the intersection point

of the parallel of latitude on P and the meridian on Q, and D be the intersection

point of the parallel of the latitude on Q and the meridian on P . (See Figure 2).

Then,
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Figure 2.

dTS(P,Q) := min
{∣∣∣

⌢

PC
∣∣∣+

∣∣∣
⌢

CQ
∣∣∣ ,
∣∣∣

⌢

PD
∣∣∣+

∣∣∣
⌢

DQ
∣∣∣
}

(4)

is called The Spherical Taxicab Distance between P and Q.

Since ∣∣∣
⌢

PD
∣∣∣ =

∣∣∣
⌢

CQ
∣∣∣ ,

dTS(P,Q) =





∣∣∣
⌢

PC
∣∣∣+

∣∣∣
⌢

CQ
∣∣∣ , |u1| ≥ |u2|

∣∣∣
⌢

PD
∣∣∣+

∣∣∣
⌢

DQ
∣∣∣ , |u1| < |u2| .

(5)

The latitude of the point C is u1 since C is on the same parallel with P , and

the longitude of point C is v2 since C is on the same meridian with Q. Similarly,

the latitude of D is u2 and the longitude of D is v1.

The arc lengths
⌢

PC and
⌢

DQ, in terms of the length of
⌢

KL on the equator are

∣∣∣
⌢

PC
∣∣∣ =

∣∣∣
⌢

KL
∣∣∣ · cosu1 =

{
r |v1 − v2| cosu1, if |v1 − v2| ≤ π

r(2π − |v1 − v2|) cosu1, if |v1 − v2| > π
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and

∣∣∣
⌢

DQ
∣∣∣ =

∣∣∣
⌢

KL
∣∣∣ · cosu2 =

{
r |v1 − v2| cosu2, if |v1 − v2| ≤ π

r(2π − |v1 − v2|) cosu2, if |v1 − v2| > π .

Also, ∣∣∣
⌢

CQ
∣∣∣ =

∣∣∣
⌢

PD
∣∣∣ = r · |u1 − u2| .

Now the spherical taxicab distance between P and Q can be formulated as follows:

dST (P,Q) =





r (|u1 − u2|+ |v1 − v2| cosu1) , |v1 − v2| ≤ π and |u1| ≥ |u2|

r (|u1 − u2|+ (2π − |v1 − v2|) cosu1) , |v1 − v2| > π and |u1| ≥ |u2|

r (|u1 − u2|+ |v1 − v2| cosu2) , |v1 − v2| ≤ π and |u1| < |u2|

r (|u1 − u2|+ (2π − |v1 − v2|) cosu2) , |v1 − v2| > π and |u1| < |u2| .

(6)

The last formula can also be shortened as

dST (P,Q) = r. {|u1 − u2|+ [|v1 − v2|] cosui} , ui = max {|u1| , |u2|} , (7)

where

[|v1 − v2|] :=

{
|v1 − v2| if |v1 − v2| ≤ π ,

2π − |v1 − v2| if |v1 − v2| > π .

The following proposition asserts that the taxicab distance function is positive

definite and symmetric but doesn’t satisfy the triangle inequality:

Proposition 1.

a) To each ordered pair of points (P,Q) on a sphere, dST assigns a non-negative

number dST (P,Q). Furthermore, dST (P,Q) = 0 if and only if P = Q.

b) dST (P,Q) = dST (Q,P ),

c) The inequality dST (P,Q) + dST (Q,R) ≥ dST (P,R) is not valid.

Proof. The properties a) and b) can be easily seen from the definition of dST .

In order to see that dST doesn’t satisfy the triangle inequality, consider the triangle

PQR with P = (π/12, 0), Q = (5π/12, π/6) and R = (0, π).
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Now, let’s answer the following question: How can we give an analogue of the

ruler postulate for the spherical taxicab geometry?

Let P denote the set of all points on the sphere of radius r and P,Q ∈ P . We

define PQ-path as union of the arcs used to calculate the spherical taxicab distance

from P to Q. Let L denote the set of all XY -paths on the sphere,

L := {XY -path : X and Y any two points on the sphere} .

Thus, the set P of points and the set L of XY -paths on the sphere form a geomet-

rical structure (P ,L). One can use the function

f(u) = (2u+ π cosu)r

to calculate the length of the longest path (that is, the maximum spherical distance

between any two points P and Q on the sphere). Here, u is the latitude of P or Q,

which is nearer to a pole. For the maximum of f ,

u ∼= 39, 5402237478101954126990155590261◦

∼= 39◦32′24′′

∼= 0, 219667909710056641181661197550145π

∼= 0, 690107091374539952004377909070395

and the maximum value k of f ,

k ∼= 1, 21051366235301868432776943516072πr

∼= 3, 80294082871831896417830842653785r.

Hence,

0 ≤ f(u) ≤ k ⇒ max dST (P,Q) ≤ k.
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Let PQ-path be a path on the sphere which is union of the arcs
⌢

PC and
⌢

CQ,

where P = (u0, v0), Q = (u′
0, v

′
0) and C = (u0, v

′
0). That is, let the point P be the

nearer point to a pole. Now we define the function ϕ as follows:

ϕ:PQ− path −→ [0, dST (P,Q)]

(u, v) −→ ϕ(u, v) =

{
[|v − v0|] cosu0, if (u, v) is on

⌢

PC

|u− u0|+ [|v − v0|] cosu0, if (u, v) is on
⌢

CQ ,

where

[|v − v0|] :=

{
|v − v0| , if |v − v0| ≤ π

2π − |v − v0| , if |v − v0| > π .

The function ϕ can be considered as a ruler for PQ-path since ϕ is a bijection and

satisfies the Ruler Equation

|ϕ(X)− ϕ(Y )| = dST (X,Y ),

where X and Y is any two points on PQ-path.

4. Spherical Circle and Spherical Taxicab Circle.

a. Equation of a spherical circle with a center on the sphere in terms of geograph-

ical coordinates.

Clearly, intersection of a plane and a sphere is a circle if they meet. A spherical

circle is defined as the locus of points that are equispherical distant from a given

fixed point on a sphere. Now, consider a sphere with radius r and let P = (u0, v0)

be a point on this sphere. Let’s find the equation of the spherical circle consisting

of points with k units distance from P measured along the great circles passing

through P . If X = (u, v) is on this spherical circle, then |
⌢

PX| = k (see Figure.3).

Now, applying the first equality in (1), one gets
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Figure 3.

cos
⌢

PX = cos
⌢

NP · cos
⌢

NX + sin
⌢

NP · sin
⌢

NX · cos
⌢

N

cos
k

r
= cos

(
π

2
− u0

)
· cos

(
π

2
− u

)
+ sin

(
π

2
− u0

)
· sin

(
π

2
− u

)
· cos(v − v0)

k = r arccos(sinu0 sinu+ cosu0 cosu cos(v − v0)), k ≤ πr. (8)

b. The Spherical Taxicab Circle.

We define the spherical taxicab circle as the set of points that have a constant

spherical taxicab distance from a given fixed point on a sphere. Let’s find the

equation of the spherical taxicab circle with radius k, k ≤ πr, k ∈ R and with

center P (u0, v0) on a sphere with radius r. If X = (u, v) is on the spherical taxicab

circle, then

dST (P,Q) = k, k ≤ πr,
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which is equivalent to

k =





r (|v − v0| cosu+ |u− u0|) , |v − v0| ≤ π and |u| ≥ |u0|

r ((2π − |v − v0|) cosu+ |u− u0|) , |v − v0| > π and |u| ≥ |u0|

r (|v − v0| cosu0 + |u− u0|) , |v − v0| ≤ π and |u| < |u0|

r ((2π − |v − v0|) cosu0 + |u− u0|) , |v − v0| > π and |u| < |u0| .

(9)

Proposition 2. A spherical circle and a spherical taxicab circle with the same

radius k coincide if they have a common center at a pole.

Proof. Let the North Pole (u0, v0) = (π
2
, 0) be the center of both circles. Then,

using equation (8), we get

k = r arccos (sinu), k ≤ πr

as the equation of the spherical circle, which means

k = r

(
π

2
− u

)
, k ≤ πr.

For the equation of the spherical taxicab circle with radius k, using Equation (9),

we get

k = r

(
|v| cos

π

2
+
∣∣∣u−

π

2

∣∣∣
)
, |v| ≤ π, |u| <

π

2
.

That is,

k = r
∣∣∣u−

π

2

∣∣∣ , |v| ≤ π, |u| <
π

2

k = r

(
π

2
− u

)
, k ≤ πr.
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Similarly, if (u0, v0) = (−π
2
, 0), then in both cases one obtains the equation

k = r

(
π

2
+ u

)
, k ≤ πr.

In general, the taxicab spherical circles are not Euclidean circles, except with

the center at a pole. It also seems that they are not a combination of circular arcs,

and are not planar curves.
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