ON A PROBLEM OF BERZSENYI REGARDING THE GCD OF POLYNOMIAL EXPRESSIONS

Les Reid

Abstract

Let $G(m, k)=\max \left\{\operatorname{GCD}\left((n+1)^{m}+k, n^{m}+k\right) \mid n \in \mathbb{N}\right\}$. The fact that $G(1, k)=1$ is trivial and Berzsenyi has shown that $G(2, k)=|4 k+1|$. We

 give explicit formulas for $G(m, k)$ for $m=3,4,5$.1. Introduction. In the May/June 1995 issue of Quantum [1], George Berzsenyi defined

$$
G(m, k)=\max \left\{\mathrm{GCD}\left((n+1)^{m}+k, n^{m}+k\right) \mid n \in \mathbb{N}\right\} .
$$

It is obvious that $G(1, k)=1$. Berzsenyi showed that $G(2, k)=|4 k+1|$ and asked what could be said about larger values of m. Subsequently, Stan Wagon asked whether $G(5,5)=1$ in his Problem of the Week 805 [3]. In this article we obtain explicit formulas for $G(3, k)$ (as reported in [2]), $G(4, k)$, and $G(5, k)$.
2. Preliminaries. We first note that a priori there is no guarantee that $G(m, k)$ exists. In fact, for $m=6$ and $k=-1$, we have $n^{2}+n+1$ as a common factor of both $(n+1)^{6}-1$ and $n^{6}-1$, so $\operatorname{GCD}\left((n+1)^{6}-1, n^{6}-1\right)$ grows without bound as n increases. However, if $\operatorname{GCD}\left((x+1)^{m}+k, x^{m}+k\right)=1$ in $\mathbb{Q}[x]$, then $G(m, k)$ exists.

More generally, suppose that $f(x) \in \mathbb{Z}[x]$ with $\operatorname{GCD}(f(x+1), f(x))=1$ in $\mathbb{Q}[x]$. Since $\mathbb{Q}[x]$ is a Euclidean Domain there exist $p(x), q(x) \in \mathbb{Q}[x]$ such that $p(x) f(x+1)+q(x) f(x)=1$. Clearing denominators, we obtain $a(x), b(x) \in \mathbb{Z}[x]$ and $A \in \mathbb{Z}$ such that $a(x) f(x+1)+b(x) f(x)=A$. The last equation shows that $\operatorname{GCD}(f(n+1), f(n))$ divides A, hence $\max \{\operatorname{GCD}(f(n+1), f(n)) \mid n \in \mathbb{N}\}$ exists.

We need the following lemma.
Lemma 2.1. If $f(x) \in \mathbb{Z}[x]$ and $\operatorname{GCD}(f(x+1), f(x))=1$ in $\mathbb{Q}[x]$, we will denote $\max \{\operatorname{GCD}(f(n+1), f(n)) \mid n \in \mathbb{N}\}$ (which exists by the argument above) by G. We have
a) If $d_{1} \mid \operatorname{GCD}\left(f\left(n_{1}+1\right), f\left(n_{1}\right)\right)$ and $d_{2} \mid \operatorname{GCD}\left(f\left(n_{2}+1\right), f\left(n_{2}\right)\right)$, then there is an $n_{3} \in \mathbb{N}$ such that $\operatorname{LCM}\left(d_{1}, d_{2}\right) \mid \operatorname{GCD}\left(f\left(n_{3}+1\right), f\left(n_{3}\right)\right)$.
b) If $d \mid \operatorname{GCD}(f(n+1), f(n))$ for some $n \in \mathbb{N}$, then $d \mid G$.
c) $\operatorname{GCD}(f(n+G+1), f(n+G))=\mathrm{GCD}(f(n+1), f(n))$.

Proof.

a) We have $f(x+h)=f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x)}{2!} h^{2}+\ldots$, where $\frac{f^{(i)}(x)}{i!} \in \mathbb{Z}[x]$. If $d \mid f(n+1)$ and $d \mid f(n)$, then for all $u \in \mathbb{Z}, f(n+u d+1)=f(n+1)+f^{\prime}(n+$ 1) $u d+\ldots$ is a multiple of d as is $f(n+u d)=f(n)+f^{\prime}(n) u d+\ldots$. Let $a=\operatorname{GCD}\left(d_{1}, d_{2}\right)$ and $d_{2}=a b$. By the argument above, $f\left(n_{1}+s d_{1}+1\right)$ and $f\left(n_{1}+s d_{1}\right)$ are both multiples of d_{1} for all $s \in \mathbb{Z}$ and $f\left(n_{2}+t b+1\right)$ and $f\left(n_{2}+t b\right)$ are both multiples of b for all $t \in \mathbb{Z}$. But since d_{1} and b are relatively prime, we can find $s, t \in \mathbb{N}$ such that $t b-s d_{1}=n_{1}-n_{2}$ (we can force s and t in \mathbb{N} by replacing t by $t+d_{1} y$ and s by $s+b y$ for y sufficiently large). Letting $n_{3}=n_{1}+s d_{1}=n_{2}+t b$, we have both d_{1} and b as factors of both $f\left(n_{3}+1\right)$ and $f\left(n_{3}\right)$. Since d_{1} and b are relatively prime, $d_{1} b=\operatorname{LCM}\left(d_{1}, d_{2}\right)$ is also a factor of both $f\left(n_{3}+1\right)$ and $f\left(n_{3}\right)$.
b) There is some $N \in \mathbb{N}$ such that $\operatorname{GCD}(f(N+1), f(N))=G$. Applying the result from part a) with $d_{1}=d, n_{1}=n, d_{2}=G, n_{2}=N$ we have

$$
\operatorname{LCM}(d, G) \mid \operatorname{GCD}\left(f\left(n_{3}+1\right), f\left(n_{3}\right)\right) \leq G .
$$

But this implies that $\operatorname{LCM}(d, G)=G$ and hence, $d \mid G$.
c) If $d \mid f(n+1)$ and $d \mid f(n)$, then by the result from part b), $d \mid G$ so $G=d t$. Using the argument from part b), $d \mid f(n+d t+1)=f(n+G+1)$ and $d \mid f(n+$ $d t)=f(n+G)$. Similarly, if $d \mid f(n+G+1)$ and $d \mid f(n+G)$, then $d \mid G$ and $d \mid f(n+G-d t+1)=f(n+1)$ and $d \mid f(n+G-d t)=f(n)$.
Note that part c) of the lemma shows that $\operatorname{GCD}(f(x+1), f(x))$ is periodic with period G. Consequently, we may replace \mathbb{N} by \mathbb{Z} in the definition of $G(m, k)$ (or more generally, G).
3. $G(3, k)$.

Theorem 3.1.

$$
G(3, k)= \begin{cases}27 k^{2}+1 & \text { if } k \equiv 0 \bmod 2 \\ \left(27 k^{2}+1\right) / 4 & \text { if } k \equiv 1 \bmod 2\end{cases}
$$

Proof.

Case 1: $k=2 j$. Let $D=27 k^{2}+1$. If we take

$$
\begin{aligned}
& a(n, k)=6 n^{2}-(9 k+3) n+9 k+1 \text { and } \\
& b(n, k)=6 n^{2}-(9 k-15) n-18 k+10,
\end{aligned}
$$

then

$$
a(n, k)\left((n+1)^{3}+k\right)-b(n, k)\left(n^{3}+k\right)=27 k^{2}+1 .
$$

Hence, $G(3, k) \mid D$.
If we choose $n=54 j^{2}(6 j+1)$, then

$$
\begin{aligned}
& (n+1)^{3}+k \\
& =\left(108 j^{2}+1\right)\left(314928 j^{7}+157464 j^{6}+23328 j^{5}+2916 j^{4}+756 j^{3}+54 j^{2}+2 j+1\right)
\end{aligned}
$$

and

$$
n^{3}+k=\left(108 j^{2}+1\right)(2 j)\left(157464 j^{6}+78732 j^{5}+11664 j^{4}-108 j^{2}+1\right) .
$$

But $108 j^{2}+1=27 k^{2}+1=D$, so $G(3, k) \mid D$ by part b) of Lemma 2.1. Therefore, $G(3, k)=D$.

Case 2: $k=2 j+1$. Let

$$
\begin{aligned}
& a(n, j)=n^{4}+(j+1) n^{3}+3 n^{2}-(7 j+5) n+\left(2 j^{2}+12 j+6\right) \text { and } \\
& b(n, j)=n^{4}+(j+4) n^{3}+(3 j+9) n^{2}-(4 j-8) n+\left(2 j^{2}-14 j-2\right) .
\end{aligned}
$$

Note that

$$
a(n, j)\left((n+1)^{3}+k\right)-b(n, j)\left(n^{3}+k\right)=54 j^{2}+54 j+14 .
$$

But

$$
\begin{aligned}
a(n, j) & =n^{4}+(j+1) n^{3}+3 n^{2}-(7 j+5) n+\left(2 j^{2}+12 j+6\right) \\
& \equiv n+(j+1) n+n+(j+1) n+0 \equiv 0 \bmod 2
\end{aligned}
$$

and

$$
\begin{aligned}
b(n, j) & =n^{4}+(j+4) n^{3}+(3 j+9) n^{2}-(4 j-8) n+\left(2 j^{2}-14 j-2\right) \\
& \equiv n+j n+(j+1) n+0+0 \equiv 0 \bmod 2
\end{aligned}
$$

Therefore, $a(n, j) / 2$ and $b(n, j) / 2$ are both integers and $(a(n, j) / 2)\left((n+1)^{3}+k\right)-(b(n, j) / 2)\left(n^{3}+k\right)=27 j^{2}+27 j+7=\left(27 k^{2}+1\right) / 4=D / 4$.

Hence, $G(3, k) \mid(D / 4)$.
Choose $n=-3 j-2$. Then

$$
(n+1)^{3}+k=-j\left(27 j^{2}+27 j+7\right) \text { and } n^{3}+k=-(j+1)\left(27 j^{2}+27 j+7\right)
$$

so $(D / 4) \mid G(3, k)$ by part b) of Lemma 2.1. Therefore, $G(3, k)=D / 4$.

4. $G(4, k)$.

Theorem 4.1.

$$
G(4, k)=\frac{p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}|16 k+1|}{5^{\epsilon(k)}}, \text { where } \epsilon(k)= \begin{cases}1 & \text { if } k \equiv 4 \bmod 5 \\ 0 & \text { otherwise }\end{cases}
$$

and the prime factorization of $|4 k-1|$ is $p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ with $p_{i} \equiv 1 \bmod 4$ and $q_{i} \equiv 3 \bmod 4$.

Proof. Letting

$$
\begin{aligned}
& a(n, k)=20 n^{3}-10 n^{2}-(16 k-4) n+(24 k-1) \text { and } \\
& b(n, k)=20 n^{3}+70 n^{2}-(16 k-84) n-(40 k-35)
\end{aligned}
$$

we have

$$
a(n, k)\left((n+1)^{4}+k\right)-b(n, k)\left(n^{4}+k\right)=(4 k-1)(16 k+1)
$$

so $G(4, k) \mid(4 k-1)(16 k+1)$.

If $n=8 k$, then

$$
\begin{aligned}
(n+1)^{4}+k & =(16 k+1)\left(256 k^{3}+112 k^{2}+17 k+1\right) \text { and } \\
n^{4}+k & =(16 k+1)\left(256 k^{3}-16 k^{2}+k\right)
\end{aligned}
$$

so by part b) of Lemma $2.1(16 k+1) \mid G(4, k)$.
Let $|4 k-1|=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}} q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ be the prime factorization of $|4 k-1|$ with $p_{i} \equiv 1 \bmod 4$ and $q_{i} \equiv 3 \bmod 4$. For a given p_{i}, since $p_{i} \equiv 1 \bmod 4$ we can find a λ_{i} such that $\lambda_{i}^{2} \equiv-1 \bmod p_{i}^{\alpha_{i}}$ and since p_{i} is odd we can find a μ_{i} such that $2 \mu_{i} \equiv 1 \bmod p_{i}^{\alpha_{i}}$. Note that we also have $4 k \equiv 1 \bmod p_{i}^{\alpha_{i}}$. If $n=\mu_{i}\left(\lambda_{i}-1\right)$, then

$$
\begin{aligned}
2^{4}\left((n+1)^{4}+k\right) & =\left(2 \mu_{i}\left(\lambda_{i}-1\right)+2\right)^{4}+16 k \equiv\left(\lambda_{i}+1\right)^{4}+4 \\
& =\lambda_{i}^{4}+4 \lambda_{i}^{3}+6 \lambda_{i}^{2}+4 \lambda_{i}+1+4 \\
& \equiv 1-4 \lambda_{i}-6+4 \lambda_{i}+1+4 \equiv 0 \bmod p_{i}^{\alpha_{i}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
2^{4}\left(n^{4}+k\right) & =\left(2 \mu_{i}\left(\lambda_{i}-1\right)\right)^{4}+16 k \equiv\left(\lambda_{i}-1\right)^{4}+4 \\
& =\lambda_{i}^{4}-4 \lambda_{i}^{3}+6 \lambda_{i}^{2}-4 \lambda_{i}+1+4 \\
& \equiv 1+4 \lambda_{i}-6-4 \lambda_{i}+1+4 \equiv 0 \bmod p_{i}^{\alpha_{i}}
\end{aligned}
$$

By part b) of Lemma 2.1, $p_{i}^{\alpha_{i}} \mid G(4, k)$.
Using part a) and b) of Lemma 2.1 and the results above, $\operatorname{LCM}(16 k+$ $\left.1, p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}\right)$ divides $G(4, k)$. If $k \not \equiv 4 \bmod 5$, then $4 k-1$ and $16 k+1$ are relatively prime and hence, $\operatorname{LCM}\left(p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, 16 k+1\right)=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}(16 k+1)$. If $k \equiv 4 \bmod 5$, then $\operatorname{GCD}(4 k-1,16 k+1)=5$ and hence, one of the $p_{i}=5$, so $\operatorname{LCM}\left(p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}, 16 k+1\right)=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}(16 k+1) / 5$.

To finish the proof, we must show that none of the q_{i} are factors of $G(4, k)$ and that when $k \equiv 4 \bmod 5,5$ cannot appear to a higher power than already exhibited. To prove the former, consider the equation

$$
\begin{equation*}
(2 n+5)\left(n^{4}+k\right)-(2 n-3)\left((n+1)^{4}+k\right)=10 n^{2}+10 n+8 k+3 \tag{1}
\end{equation*}
$$

If q_{i} were a factor of $G(4, k)$, we would have $10 n^{2}+10 n+8 k+3 \equiv 0 \bmod q_{i}$. Since q_{i} is a factor of $4 k-1$, we have $4 k \equiv 1 \bmod q_{i}$. Therefore,

$$
10 n^{2}+10 n+8 k+3 \equiv 10 n^{2}+10 n+2+3 \equiv 5\left(2 n^{2}+2 n+1\right) \equiv 0 \quad \bmod q_{i}
$$

Since $q_{i} \equiv 3 \bmod 4$ and $\operatorname{GCD}\left(5, q_{i}\right)=1$, it follows that $2 n^{2}+2 n+1 \equiv 0 \bmod q_{i}$. But this implies that $(2 n+1)^{2} \equiv-1 \bmod q_{i}$ which is impossible since $q_{i} \equiv 3$ $\bmod 4$.

If $k \equiv 4 \bmod 5$, we must show that if $4 k-1=u 5^{i}$ and $16 k+1=v 5^{j}$, where u and v are not divisible by 5 , then 5^{i+j} does not divide $G(4, k)$. Suppose that it did. Since we've seen above that $(16 k+1) \mid G(4, k)$, we'd have $5^{i}(16 k+1) \mid G(4, k)$. Note that since $k \equiv 4 \bmod 5$ we have $i>0$ and $j>0$. The equation

$$
\left(2 n^{2}-2 n+1\right)\left((n+1)^{4}+k\right)-\left(2 n^{2}+6 n+5\right)\left(n^{4}+k\right)=(4 k-1)(2 n+1)
$$

shows that we would have $(4 k-1)(2 n+1) \equiv 0 \bmod 5^{i}(16 k+1)$. This implies that $u(2 n+1) \equiv 0 \bmod (16 k+1)$, and since u is relatively prime to $16 k+1$, $(2 n+1) \equiv 0 \bmod (16 k+1)$. Hence, $n \equiv 8 k \bmod (16 k+1)$, so $n=8 k+(16 k+1) t$. Now Equation (1) shows that $10 n^{2}+10 n+8 k+3 \equiv 0 \bmod 5^{i}(16 k+1)$. However, this yields

$$
\begin{aligned}
10 n^{2}+10 n+8 k+3 & =10(8 k+(16 k+1) t)^{2}+10(8 k+(16 k+1) t)+8 k+3 \\
& =(16 k+1)\left(10(16 k+1) t^{2}+10(16 k+1) t+40 k+3\right) \\
& \equiv 0 \bmod 5^{i}(16 k+1),
\end{aligned}
$$

which implies that

$$
10(16 k+1) t^{2}+10(16 k+1) t+40 k+3 \equiv 0 \quad \bmod 5^{i}
$$

But this is a contradiction since the left-hand side is congruent to $3 \bmod 5$.
5. $\mathrm{G}(5, \mathrm{k})$.

Theorem 5.1.

$$
G(5, k)= \begin{cases}\left(3125 k^{4}+625 k^{2}+1\right) / 11 & \text { if } k \equiv \pm 1 \bmod 11 \\ 3125 k^{4}+625 k^{2}+1 & \text { otherwise }\end{cases}
$$

Proof. Denote $3125 k^{4}+625 k^{2}+1$ by D.
Case 1: If $k \not \equiv \pm 1 \bmod 11$, then $D \not \equiv 0 \bmod 11$. Let

$$
\begin{aligned}
a(n, k) & =\left(1250 k^{2}+70\right) n^{4}-\left(625 k^{2}+275 k+35\right) n^{3}-\left(125 k^{2}-275 k-15\right) n^{2} \\
& -\left(625 k^{3}-500 k^{2}+200 k+5\right) n+1250 k^{3}-375 k^{2}+125 k+1
\end{aligned}
$$

and

$$
\begin{aligned}
b(n, k) & =\left(1250 k^{2}+70\right) n^{4}+\left(5625 k^{2}-275 k+315\right) n^{3} \\
& +\left(9250 k^{2}-1100 k+540\right) n^{2}-\left(625 k^{3}-6125 k^{2}+1575 k-420\right) n \\
& -1875 k^{3}+875 k^{2}-875 k+126
\end{aligned}
$$

Then

$$
\begin{equation*}
a(n, k)\left((n+1)^{5}+k\right)-b(n, k)\left(n^{5}+k\right)=D \tag{2}
\end{equation*}
$$

and consequently $G(5, k) \mid D$.
On the other hand, since D is always odd and in this case $D \not \equiv 0 \bmod 11$, there is a positive integer λ such that $-22 \lambda \equiv 1 \bmod D$. Let $n=\lambda\left(625 k^{3}+90 k+11\right)$. We have

$$
\begin{aligned}
-22^{5}\left((n+1)^{5}+k\right) & =\left(-22 \lambda\left(625 k^{3}+90 k+11\right)-22\right)^{5}-22^{5} k \\
& \equiv\left(\left(625 k^{3}+90 k+11\right)-22\right)^{5}-22^{5} k \equiv 0 \bmod D
\end{aligned}
$$

The last congruence is demonstrated by explicitly factoring the polynomial $\left(625 k^{3}+\right.$ $90 k-11)^{5}-22^{5} k$ using a computer algebra system such as Mathematica. Since 22 is relatively prime to D, we conclude that $(n+1)^{5}+k \equiv 0 \bmod D$. A similar argument shows that $n^{5}+k \equiv 0 \bmod D$, so by Lemma $2.1 D \mid G(5, k)$ and hence, $G(5, k)=D$.

Case 2: If $k \equiv \pm 1 \bmod 11$, one can check that $a(n, k)$ and $b(n, k)$ are both divisible by 11 , so by Equation (2) $G(5, k) \mid(D / 11)$. One can also check that D is divisible by 121 . Denoting $D / 121$ by R, we wish to show that $(11 R) \mid G(5, k)$. Note that since R is odd, there is a positive integer λ such that $-2 \lambda \equiv 1 \bmod R$.

We are reduced to considering subcases:
Case 2a: If $k=11 \ell+1$ with $\ell \not \equiv 3,9 \bmod 11$, then $R \not \equiv 0 \bmod 11$. By the Chinese Remainder Theorem, we can find an n such that

$$
\begin{aligned}
& n \equiv \lambda\left(75625 \ell^{3}+20625 \ell^{2}+1965 \ell+66\right) \bmod R \\
& \quad \text { and } \\
& n \equiv 6 \bmod 11
\end{aligned}
$$

We have

$$
\begin{aligned}
-2^{5}\left((n+1)^{5}+k\right) & =\left(-2 \lambda\left(75625 \ell^{3}+20625 \ell^{2}+1965 \ell+66\right)-2\right)^{5}-2^{5}(11 \ell+1) \\
& \equiv\left(75625 \ell^{3}+20625 \ell^{2}+1965 \ell+66-2\right)^{5}-2^{5}(11 \ell+1) \\
& \equiv 0 \bmod R
\end{aligned}
$$

where as before the latter congruence is shown by explicit factorization. Since $(n+1)^{5}+k \equiv(6+1)^{5}+1 \equiv 0 \bmod 11$, we have $(n+1)^{5}+k \equiv 0 \bmod 11 R$. A similar argument shows that $n^{5}+k \equiv 0 \bmod 11 R$, therefore $(D / 11) \mid G(5, k)$.

For the remaining cases, we provide the appropriate choice of n and leave it to the reader (and a suitable computer algebra system) to verify the results.

Case 2 b : If $k=11 \ell-1$ with $\ell \not \equiv 2,8 \bmod 11$, then $R \not \equiv 0 \bmod 11$ and we can find an n such that

$$
\begin{aligned}
& n \equiv \lambda\left(75625 \ell^{3}-20625 \ell^{2}+1965 \ell-64\right) \bmod R \\
& \quad \text { and } \\
& n \equiv 3 \bmod 11
\end{aligned}
$$

Case 3: Let

$$
\begin{aligned}
& P=75625 \ell^{3}+20625 \ell^{2}+1965 \ell+66 \text { and } \\
& Q=75625 \ell^{3}-20625 \ell^{2}+1965 \ell-64
\end{aligned}
$$

If $k=11 \ell+1$ and $\ell \equiv 3 \bmod 11$, take $n=\lambda P+R$.
If $k=11 \ell+1$ and $\ell \equiv 9 \bmod 11$, take $n=\lambda P+10 R$.
If $k=11 \ell-1$ and $\ell \equiv 2 \bmod 11$, take $n=\lambda Q+R$.
If $k=11 \ell-1$ and $\ell \equiv 8 \bmod 11$, take $n=\lambda Q+10 R$.
In each case, a calculation shows that $(11 R) \mid \mathrm{GCD}\left((n+1)^{5}+k, n^{5}+k\right)$ and hence, $(D / 11) \mid G(5, k)$.
6. Conclusion. We have computed $G(3, k), G(4, k)$, and $G(5, k)$. Preliminary calculations indicate that there are similar, albeit more complicated, formulas for $G(6, k)$ and $G(7, k)$, the nature of the formulas depending on the parity of m.

In [1], Berzsenyi also asks to find m and k such that $G(m, k)=1$. The author recklessly conjectures that $G(m, k)=1$ if and only if $k=0$, but currently has no proof of this claim.

An additional question is to find m and k such that $G(m, k)$ exists. In Section 2, we saw that $G(m, k)$ does not exist when $m=6$ and $k=-1$. It is not difficult to show that $G(m, k)$ does not exist if m is a multiple of 6 and $k=-1$, but the author is unaware if there are any other cases.

Finally, we return to Wagon's problem. From the results of Section 5, we see that $G(5,5)=3125(5)^{4}+625(5)^{2}+1=1968751$, not 1 , but the first n for which $\operatorname{GCD}\left((n+1)^{5}+5, n^{5}+5\right)>1$ is when $n=533360$. This is a good example to illustrate that just because a result is true for a large number of examples, it is not necessarily true in general.

References

1. G. Berzsenyi, "Maximizing the Greatest," Quantum, 3 (May/June 1995), 39.
2. G. Berzsenyi, "Lost in a Forest," Quantum, 6 (November/December 1995), 41.
3. S. Wagon, "Problem of the Week 805, "True or False?", http://mathforum.org/wagon/spring96/p805.html.

Les Reid
Department of Mathematics
Southwest Missouri State University
Springfield, MO 65804
email: les@math.smsu.edu

