ALPHA-DISTANCE - A GENERALIZATION OF CHINESE CHECKER DISTANCE AND TAXICAB DISTANCE

Songlin Tian

The Euclidean distance measures the shortest distance between two points. The taxicab distance [2] measures the distance between two points when only moves along axis-directions are permitted. If, in addition, the diagonal moves are also permitted, the distance between A and B is given by the Chinese checker distance [1]. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points in \mathbb{R}^{2}. Denote

$$
\Delta_{A B}=\max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\} \quad \text { and } \quad \delta_{A B}=\min \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\} .
$$

The Euclidean distance between A and B is

$$
d(A, B)=\sqrt{\Delta_{A B}^{2}+\delta_{A B}^{2}}
$$

The taxicab distance between A and B is

$$
d_{T}(A, B)=\Delta_{A B}+\delta_{A B}
$$

The Chinese checker distance between A and B is

$$
d_{C}(A, B)=\Delta_{A B}+(\sqrt{2}-1) \delta_{A B}
$$

In this paper we introduce a family of distances which include both Chinese checker distance and taxicab distance as special cases. For each $\alpha \in[0, \pi / 4]$, we define the α-distance between A and B by

$$
d_{\alpha}(A, B)=\Delta_{A B}+(\sec \alpha-\tan \alpha) \delta_{A B}
$$

Then, $d_{0}(A, B)=d_{T}(A, B)$ and $d_{\pi / 4}(A, B)=d_{C}(A, B)$. Observe that if $\delta_{A B}>0$, then

$$
d_{C}(A, B)<d_{\alpha}(A, B)<d_{T}(A, B) \text { for all } \alpha \in(0, \pi / 4)
$$

When $\delta_{A B}=0, A$ and B lie on a horizontal or vertical line, and it follows that $d_{C}(A, B)=d_{\alpha}(A, B)=d_{T}(A, B)=d(A, B)$ for all $\alpha \in[0, \pi / 4]$.

Clearly, $d_{\alpha}(A, B)=0$ if and only if $A=B$, and $d_{\alpha}(A, B)=d_{\alpha}(B, A)$ for all $A, B \in \mathbb{R}^{2}$. The main result of this paper will be that

$$
d_{\alpha}(A, B) \leq d_{\alpha}(A, C)+d_{\alpha}(C, B)
$$

for all $A, B, C \in \mathbb{R}^{2}$, and $\alpha \in[0, \pi / 4]$.
For two points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$, we denote by $R_{A B}$ the rectangular region bounded by the lines $x=x_{1}, y=y_{1}, x=x_{2}$, and $y=y_{2}$. The following propositions follow directly from the definition of the α-distance.
 congruent, then

$$
d_{\alpha}(A, B)=d_{\alpha}(C, D) \text { for all } \alpha \in[0, \pi / 4]
$$

As a consequence of Proposition 1, the α-distance between two points is an invariant under translations and reflections about the x-axis, the y-axis, or both.

Proposition 2. Let A and B be two points in \mathbb{R}^{2}. Then

$$
d_{\alpha}(A, B) \geq d_{\alpha}(C, D) \text { for all } C, D \in R_{A B} \text { and } \alpha \in[0, \pi / 4]
$$

The following lemma is useful in establishing the main result.
$\underline{\text { Lemma 3 }}$. If $\alpha \in[0, \pi / 4]$, then

$$
\Delta_{A B}+(\sec \alpha-\tan \alpha) \delta_{A B} \geq \delta_{A B}+(\sec \alpha-\tan \alpha) \Delta_{A B}
$$

for all $A, B \in \mathbb{R}^{2}$.
 $[0, \pi / 4]$, it follows that $\cos \alpha>0$ and $\sin \alpha+\cos \alpha \geq 1$. Therefore, $\tan \alpha+1 \geq \sec \alpha$, i.e., $1 \geq \sec \alpha-\tan \alpha$. Multiplying both sides by $\Delta_{A B}-\delta_{A B}$, we have

$$
\begin{gathered}
\Delta_{A B}-\delta_{A B} \geq\left(\Delta_{A B}-\delta_{A B}\right)(\sec \alpha-\tan \alpha), \text { i.e., } \\
\Delta_{A B}+(\sec \alpha-\tan \alpha) \delta_{A B} \geq \delta_{A B}+(\sec \alpha-\tan \alpha) \Delta_{A B}
\end{gathered}
$$

Theorem 4. Let A and B be two points in \mathbb{R}^{2} and $\alpha \in[0, \pi / 4]$. Then,

$$
d_{\alpha}(A, B) \leq d_{\alpha}(A, C)+d_{\alpha}(C, B)
$$

for all $C \in \mathbb{R}^{2}$.
Proof. It is obvious that the result holds when $\delta_{A B}=0$. Assume $\delta_{A B}>0$. By Proposition 1, without loss of generality, assume that A lies at the origin, and $B\left(x_{2}, y_{2}\right)$, with $x_{2}>y_{2}>0$, lies in the first quadrant. Identify points $D\left(x_{2}-y_{2}, 0\right)$,
$E\left(x_{2}-y_{2} \tan \alpha, 0\right)$, and $F\left(x_{2}, 0\right)$. Let $R_{1}=\triangle A B D, R_{2}=\Delta D B E, R_{3}=\Delta E B F$, and

$$
R_{4}=\left\{(x, y) \mid x \geq 0 \text { and } y<0, \text { or } x>x_{2} \text { and } y \geq 0\right\}
$$

(see Figure 1).

Figure 1.
By Proposition 1, it suffices to prove the result for $C \in R_{1} \cup R_{2} \cup R_{3} \cup R_{4}$.
Case 1. Assume that $C(x, y) \in R_{1}$.
In this case, it follows that $x \geq y$ and $x_{2}-x \geq y_{2}-y$. Thus,
$d_{\alpha}(A, C)=x+(\sec \alpha-\tan \alpha) y$ and $d_{\alpha}(C, B)=x_{2}-x+(\sec \alpha-\tan \alpha)\left(y_{2}-y\right)$.
Therefore,

$$
d_{\alpha}(A, C)+d_{\alpha}(C, B)=x_{2}+(\sec \alpha-\tan \alpha) y_{2}=d_{\alpha}(A, B)
$$

Case 2. Assume $C(x, y) \in R_{2}$.
Draw a line segment parallel to the x-axis through C to intersect line segment $\overline{B E}$ at G. Draw a line segment parallel to $\overline{B E}$ through C to intersect the x-axis at point H (see Figure 2).

Since the quadrilateral $C G E H$ is a parallelogram, it follows that $|\overline{C G}|=|\overline{H E}|$ and $|\overline{H C}|=|\overline{E G}|$. Note that $d_{\alpha}(A, C)=|\overline{A H}|+|\overline{H C}|$ and

$$
\begin{aligned}
d_{\alpha}(A, B) & =|\overline{A E}|+|\overline{E B}| \\
& =|\overline{A H}|+|\overline{H E}|+|\overline{E G}|+|\overline{G B}| \\
& =|\overline{A H}|+|\overline{H C}|+|\overline{C G}|+|\overline{G B}| \\
& =d_{\alpha}(A, C)+|\overline{C G}|+|\overline{G B}| .
\end{aligned}
$$

Figure 2.
By Lemma 3,

$$
|\overline{C G}|+|\overline{G B}| \leq d_{\alpha}(C, B)
$$

Therefore,

$$
d_{\alpha}(A, B) \leq d_{\alpha}(A, C)+d_{\alpha}(C, B)
$$

Case 3. Assume that $C(x, y) \in R_{3}$.

Let G and H be the points obtained as in Case 2. As in Case 2, it follows that $|\overline{G C}|=|\overline{E H}|$ and $|\overline{H C}|=|\overline{E G}|$. Observe that,

$$
\begin{aligned}
d_{\alpha}(A, B) & =|\overline{A E}|+|\overline{E B}| \\
& =|\overline{A E}|+|\overline{E G}|+|\overline{G B}|, \\
d_{\alpha}(A, C) & =|\overline{A H}|+|\overline{H C}| \\
& =|\overline{A E}|+|\overline{E H}|+|\overline{H C}| \\
& =|\overline{A E}|+|\overline{E G}|+|\overline{G C}|,
\end{aligned}
$$

and

$$
|\overline{C B}| \leq d_{\alpha}(C, B) .
$$

Therefore,

$$
\begin{aligned}
d_{\alpha}(A, B) & =|\overline{A E}|+|\overline{E G}|+|\overline{G B}| \\
& \leq|\overline{A E}|+|\overline{E G}|+|\overline{G C}|+|\overline{C B}| \\
& =d_{\alpha}(A, C)+d_{\alpha}(C, B) .
\end{aligned}
$$

Case 4. Assume that $C(x, y) \in R_{4}$.
Let $h=\min \left\{\max \{0, y\}, y_{2}\right\}$ and $k=\min \left\{x, x_{2}\right\}$. Denote by D the point (h, k). Then D lies on the line segment $\overline{A F}$ or $\overline{B F}$ (see Figure 1). By Proposition 2,

$$
d_{\alpha}(A, D) \leq d_{\alpha}(A, C) \quad \text { and } \quad d_{\alpha}(D, B) \leq d_{\alpha}(C, B)
$$

Based on the results from Case 2 and Case 3,

$$
d_{\alpha}(A, B) \leq d_{\alpha}(A, D)+d_{\alpha}(D, B) \leq d_{\alpha}(A, C)+d_{\alpha}(C, B)
$$

We know that geometric figures such as lines, circles, parabolas, ellipses, and hyperbolas can be defined based on a distance. It is a good undergraduate/graduate research topic to characterize these figures under the α-distance.

References

1. G. Chen, Lines and Circles in Taxicab Geometry, Master's Thesis, Central Missouri State University, Warrensburg, MO, 1992.
2. E. Krause, Taxicab Geometry, Addison-Wesley Publishing Company, Menlo Park, CA, 1975.

Songlin Tian
Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO 64093
email: slt8884@cmsu2.cmsu.edu

