
106 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

USING THE TI-92 PLUS TO INTRODUCE

THE RSA CRYPTOSYSTEM

Robert T. Harger and Neil P. Sigmon

1. Introduction. With society becoming more and more reliant on digital

and computing technology, the ability to transfer information in a secure and confi-

dential fashion using cryptography, the art of secret message writing, has increased

dramatically in importance. As this reliance increases in the future, people will

benefit in having at least some basic knowledge of this important topic. However,

most students, especially those majoring in liberal arts and humanity curriculums,

have no formal training in any of the mathematics techniques that are used in

cryptography. Much of this problem stems from the fact that many cryptographic

techniques are too tedious to perform by hand and rely on computing technology

not readily available to all students for performing realistic examples.

To alleviate this problem, the topic of cryptography has been integrated into

our finite mathematics course. This course, which exposes students to topics such

as linear equation applications, matrices, and mathematics of finance, is designed

to introduce some of the many “real-life” applications of mathematics. Preliminary

evaluations from students have shown a favorable response for integrating cryptog-

raphy into this course. As a part of this topic, the RSA Cryptosystem, currently

one of the most widely used cryptosystems, is introduced. This cryptosystem is

simplistic in its application in that one has to only understand the concepts of

exponentiation and modular arithmetic to implement it. However, realistic appli-

cations of this system require large integers, which makes it impractical to compute

by hand. Fortunately, the algorithms necessary to perform the computations re-

quired for the RSA Cryptosystem can easily be programmed into a TI-92 Plus

graphics calculator.

The purpose of this article is to demonstrate how the RSA Cryptosystem is

integrated into our finite mathematics course. In particular, we discuss how the

TI-92 Plus plays an integral part in performing the needed computations. As a

point of information, every student is required to have a TI-92 Plus (or TI-89) for

our course. We first give a discussion of some basic background mathematics.

2. Preliminary Concepts. The RSA Cryptosystem relies on concepts from

number theory that are familiar to most students; exponentiation, prime numbers,

greatest common divisors, and modular arithmetic. All the numbers we work with

in this paper are nonnegative integers. When denoting exponentiation we will use

VOLUME 17, NUMBER 2, SPRING 2005 107

the following common notation; if a is any real number and n is any natural number,

then

an = a · a · · ·a
︸ ︷︷ ︸

multiplied n times

.

A natural number, p, is said to be prime if its only divisors are 1 and p. Any number

that is not prime is called a composite number. The greatest common divisor of

two natural numbers a and b, written as gcd(a, b), is the largest natural number

which divides both a and b with no remainder. One important fact is the greatest

common divisor of any two prime numbers is always 1. This result can also be true

for composite numbers. More generally, two natural numbers a and b are said to

be relatively prime if gcd(a, b) = 1. Modular arithmetic arises from the elementary

technique of long division. When performing the long division a ÷ b, we continue

the process until we obtain a quotient, q, and a remainder, r, where 0 ≤ r < b. The

result of any long division, a÷ b, can be expressed mathematically by the equation

a

b
= q +

r

b
.

Multiplying both sides of this equation by b yields a = qb + r. The latter equality

demonstrates a more general theorem known as the division algorithm. The division

algorithm states that if a and b are natural numbers with b 6= 0, then there exists

unique numbers q and r such that a = qb+r. This remainder provides the basis for

modular arithmetic. We say r is congruent to a(mod b), written as r ≡ a(mod b),

if r is the remainder of the division a ÷ b. In the context of modular arithmetic,

the number b is defined as the modulus and the concept of “congruence” can be

thought of as a generalization of the equality relation.

There are many properties involving modular addition and multiplication,

which are unnecessary for the scope of this paper. However, it is essential that

we discuss the concept of multiplicative inverses. Given two natural numbers a

and b, with a < b, we say the natural number t is the multiplicative inverse of

a with respect to the modulus b if t < b and (a · t)(mod b) ≡ 1. Multiplicative

inverses only exist when the numbers a and b are relatively prime. In this case, the

multiplicative inverse t of a is unique with respect to the modulus b.

3. Cryptosystem Description. The RSA Cryptosystem is named after its

developers, Rivest, Shamir, and Adelman, who first published the system in 1978.

The setup of this cryptosystem is described by the following steps:

108 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

1. Choose two prime numbers p and q and form the products n = pq and f =

(p− 1)(q − 1).

2. Two relatively prime natural numbers e and d are determined where (e·d)(mod

f) ≡ 1. Note in this choice that gcd(e, f) = 1.

3. Given a message M we want to send, we encipher the message by computing

M e(mod n) ≡ C.

Note that in order to recover the message properly, M < n.

4. To recover the message, we compute

Cd(mod n) ≡ M.

The RSA Cryptosystem is an example of a public key cryptosystem. The

intended recipient of a message will initiate steps 1 and 2 of the process in that he

or she will determine two prime numbers and compute the integers n, f , e, and

d. The integers n and e are made public knowledge. Any person who wants to

send a message (step 3) to the recipient will use n and e to encipher the message.

Only the recipient can recover the message (step 4) since only he or she knows the

deciphering exponent d. The security of the method is based on the inability of

any intruder to factor the integer into a product of its prime factors p and q, hence

preventing the formation of the quantity f and the recovery of d that the recipient

forms in step 2.

4. TI-92 Plus Implementation. In the finite mathematics class, students

are taught elementary techniques using small integer values for performing primal-

ity testing, integer factorization, greatest common divisor calculations, and modular

arithmetic. In addition, students implement the RSA computations for small inte-

ger values to get a feel of how the cryptosystem works. However, these calculations

quickly become impractical for larger values. The TI-92 Plus provides a valuable

tool for overcoming this problem which we now demonstrate.

To perform primality testing, the built-in isPrime command is provided to

determine if a given number is prime. As demonstrated in Figure 1, we see that

1709 and 12373 are primes while 1560001 is not prime.

VOLUME 17, NUMBER 2, SPRING 2005 109

To generate prime numbers, we use the user-defined function nextprim. The

code for this routine is given in the appendix. This function generates the small-

est prime larger than the given input. As illustrated in Figure 2, we see that

the smallest prime larger than 235441 is 235447. This can be verified by us-

ing the isPrime command. Next, we generate the primes 93652157, 780702347,

1093457277444666623, and 1234567890123456789012345678901234568123.

Three of the built-in features of the TI-92 Plus are factor, gcd, and mod

commands. For example if we enter factor(7010254402661) the calculator will

return 1234439 · 5678899. Entering gcd(5048,3271244) the calculator returns 4588.

If we want 500234(mod 10301) we enter mod(500234,10301) and the TI-92 Plus

returns 5786.

To demonstrate how the RSA Cryptosystem process works, suppose we use

nextprim to generate a pair of primes. If we type nextprim(12340) and

nextprim(35350) the calculator returns 12343 and 35353, respectively. We then

store each of these (using the STO key) as p and q. We can now calculate n and

f by entering p · q → n and (p− 1) · (q − 1) → f .

110 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

To assist in completing step 2 of the RSA process, the user-written function

inverse (the code for this routine is given in the appendix) is provided. Suppose

we use nextprim to choose e = 92347. Figure 3 demonstrates how the deciphering

exponent d = 5094211 is found with the inverse routine by using e = 92347 and the

modulus f = 436314384 as parameters.

We should note that e and d are multiplicative inverses with respect to modulus

f . As a verification, one can simply type mod(e · d, f) and see that they get 1.

In the finite math class, students are not expected to understand how the code

for the inverse programworks (it employs the Euclidean algorithm). However, they

are expected to understand what a multiplicative inverse is and how it is verified.

An important fact to note is that the enciphering exponent e must be chosen so

that gcd(e, f) = 1. If one chooses e where this requirement is not satisfied, the

inverse routine will notify the user as demonstrated in Figure 4.

VOLUME 17, NUMBER 2, SPRING 2005 111

We next demonstrate how messages can be enciphered and deciphered using

the TI-92 Plus. For example, suppose we desire to encrypt the message

high point university

with an RSA scheme created above. Figure 5 given below demonstrates how we

encipher this message. To convert letters into numbers, we let a = 01, b = 02, c =

03, , . . . , z = 26, [] = 27. Using the user-written function digits given in the

appendix, we see that n is 9 digits long. Hence, we break our message into blocks of

four letters (remember, each letter in general is translated into a two-digit number)

to form “high”, “poi”, “nt u”, “nive”, “rsit”, and “y” (the last block has the

remaining number of leftover letters less than or equal to four). The user-written

routine tonumber given in the appendix is designed to automatically perform this

conversion for the specified number of letters. By entering,

tonumber(“high point university”, 4)→ptext

we translate this message in four letter blocks as “8090708”, “27161509”,

“14202721”, “14092205”, “18190920”, and “25” and store the result in a list as

the variable pt. Using the user-written routine expmod (the code for this routine

is given in the appendix), we encrypt each of these blocks as illustrated in Figure

5.

The previous calculation gives the cipher-text “126122339”, “333805549”,

“70029804”, “106900431”, “37275443”, and “318328073”, which is stored as a list

in the variable ct. To decipher, we use the deciphering exponent d = 5094211 found

above to recover the message with expmod. Storing the result of expmod in the

variable pt, we use the user-written function toletter in the appendix to recover

the message. These calculations are illustrated in Figure 6.

112 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Recall that the security of the RSA cryptosystem is based on the inability of

any intruder to factor the integer into a product of its prime factors p and q, which

in turn prevents the intruder in determining the deciphering exponent d. For rela-

tively small values of n, one can use the TI-92 Plus to demonstrate to students how

to break and decipher a message encrypted using the RSA. For example, suppose

an intruder intercepts the message encrypted as the integer blocks “39767444491”,

“13121743362”, “12106110485”, “11091994299”, “34354345701”, “48192903989”

and “31880933212” using the recipients public key of n = 89317065419 and

e = 56909. To decipher this message, we need to find the deciphering expo-

nent d. To do this, the intruder factors n into its prime factors and determines

n = 123457 · 723467. The intruder then assigns p = 123457 and q = 723467 and

finds f = (p− 1)(q− 1) = 89316218496. Next, the intruder determines that the in-

verse of e mod f is the deciphering exponent d = 18255921797. The computations

described can be seen in Figure 7.

VOLUME 17, NUMBER 2, SPRING 2005 113

Finally, the intruder enters

expmod ({39767444491,13121743362,12106110485,11091994299,34354345701,

48192903989,31880933212},d,n)→ ptext

which produces the integer blocks “318251620”, “1507180116”, “825270301”,

“1427020527”, “501192527”, “2015271205” and “11814” and stores them in the

variable ptext.

By entering toletter(ptext), we see that the message reads

cryptography can be easy to learn.

One can easily demonstrate how the security of the system can be increased.

For example, one can quickly use the nextprim function to generate the two primes

p = 554545549391949639 and q = 956985592342242422257

to form

n = p · q = 42638058164124275756696340965947116715223.

However, it can quickly be seen that the TI-92 Plus is unable to factor this value

of n in a reasonable amount of time.

An important note to make about the expmod program is that it employs a

fast modular exponentiation algorithm similar to that found in [1]. A description

of how this process works can be found in [2]. Although students in the finite

mathematics class are not required to understand how the algorithm works, they do

see the purpose of why this algorithm is beneficial. Performing the exponentiation

before applying the mod requires working with extremely large integers, which

quickly becomes computationally infeasible.

5. Conclusion. In this paper, we have demonstrated how the science of cryp-

tography, specifically the RSA cryptosystem, can be integrated as part of a finite

mathematics course. The use of the TI-92 Plus graphics calculator plays an impor-

tant part in the teaching process. More details of how this concept is integrated

into High Point’s finite mathematics course can be obtained by requesting a copy

of [3] from one of the authors.

The RSA Cryptosystem is currently one of the most common methods used

for performing message concealment. To obtain more details on how and why the

cryptosystem works, see [2].

114 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Appendix: User-Written Codes. The code for the nextprim, inverse,

and expmod routines is now given. Once these programs are downloaded into the

TI-92 Plus, these routines can be accessed by typing their names on the calculator

command line.

The nextprim function is specified by the form nextprim(number) and re-

turns the smallest prime that is larger than the input parameter number. This

function can be found in [4].

:nextprim(n)

:Func

:Loop

:n+1→n

:If isPrime(n)

:Return n

:EndLoop

:EndFunc

The inverse function is specified by the form inverse(number, modulus),

where number is the integer for which the multiplicative inverse is to be calculated

with respect to the modulus.

:inverse(n,m)

:Func

:Local rm1,rm2,s,um1,um2,um3

:n→rm1

:m→rm2

:m→s

:1→um1

:0→um2

:While rm2>0

:mod(rm1,s)→rm2

:um1-um2*floor(rm1/s)→um3

:s→rm1

:rm2→s

:um2→um1

:um3→um2

:EndWhile

:If rm1 6=1 Then

:Return “Gcd 6= 1. No inverse exists. Gcd is ”&string(rm1)

:Else

VOLUME 17, NUMBER 2, SPRING 2005 115

:If um1<0

:mod(um1,m)→um1

:Return um1

:EndIf

:EndFunc

The expmod function is specified by the form expmod(base, exponent, mod-

ulus), where base is the exponential base raised to the exponent power and reduced

to the integer remainder upon division by the modulus. The first parameter base

can either be a single integer or a list of integers enclosed in curly brackets { }

separated by commas.

:expmod(b,e,m)

:Func

:Local bc,y

:b→bc

:1→y

:While e>0

:If mod(e,2)=1

:mod(bc*y,m)→y

:floor(e/2)→e

:mod(bc∧2,m)→bc

:EndWhile

:Return y

:EndFunc

The digits function is specified by the form digits(number), where number is

the non-negative integer for which the number of digits is to be counted.

:digits(n)

:Func

:Local ct

:string→ct

:Return dim(ct)

:EndFunc

The function tonumber is specified by the form tonumber(message, num-

letter), where message is the message string specified in lower case letters enclosed

in quotation marks that will be converted to its alphabet numerical representation

in numletter blocks.

116 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

:tonumber(mess,nl)

:Func

:Local sl, cn, sn, ii, jj, alphabet, numl

:“abcdefghijklmnopqrstuvwxyz” → alphabet

:dim(mess)→sl

:{}→numl

:0→ii

:While ii<sl

:0→cn

:0→jj

:While jj<nl and ii+jj<sl

:1+jj→jj

:inString(alphabet,mid(mess,ii+jj,1))→sn

:100*cn+sn→cn

:EndWhile

:augment(numl,{cn})→numl

:ii+nl→ii

:EndWhile

:If dim(numl)=1 Then

:Return numl[1]

:Else

:Return numl

:EndIf

:EndFunc

The function toletter converts a number or list of numbers into its alphabet

representation. It is specified by the form toletter(number), where the parameter

number is the single number or list of numbers enclosed in curly brackets { } to be

converted.

:toletter(mnum)

:Func

:Local ii,jj,cs,cn,sl,sans,bl,numl,bstr, alphabet

:{“a”,“b”,“c”,“d”,“e”,“f”,“g”,“h”,“i”,“j”,“k”,“l”,“m”,“n”,“o”,“p”,“q”,

“r”,“s”,“t”,“u”,“v”,“w”,“x”,“y”,“z”, “ ” }→alphabet

:””→sans

:{mnum}→numl

:If dim(numl)6=1

:mnum→numl

:dim(numl)→bl

VOLUME 17, NUMBER 2, SPRING 2005 117

:For jj,1,bl

:numl[jj]→cn

:floor(log(cn)/2.))+1→sl

””→bstr

:For ii,1,sl

:cn/100→cn

:alphabet[fpart(cn)*100]→cs

:cs&bstr→bstr

:floor(cn)→cn

:EndFor

:sans&bstr→sans

:EndFor

:Return sans

:EndFunc

References

1. T. Feil, “RSA Encryption,” MapleTech, 2 (1996), 50–52.

2. R. Klima, N. Sigmon, and E. Stitzinger, Applications of Abstract Algebra With

Maple, CRC Press, Llc., Boca Raton, FL, 2000.

3. N. Sigmon, “Cryptography: Chapter for Finite Mathematics,” Mathematics
Department, High Point University.

4. Texas Instruments TI-89 TI-92 Plus Guidebook for Advanced Mathematics

Software Version 2.0, Texas Instruments, 1999.

Mathematics Subject Classification (2000): 00-01, 97-04

Robert T. Harger
Department of Mathematics
High Point University
High Point, NC 27262
email: rharger@highpoint.edu

Neil P. Sigmon
Department of Mathematics
High Point University
High Point, NC 27262
email: nsigmon@highpoint.edu

