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AMBIENT SPACES FOR CONES GENERATED BY

MATRICIAL INNER PRODUCTS

Richard D. Hill, Muriel J. Skoug, Steven R. Waters, and Joseph R. Siler

Abstract. This paper provides an expository survey of the characterizations

and properties of four ambient spaces for cones generated by matricial inner prod-

ucts. The partition induced on the vector space of linear operators on complex

square matrices is also displayed.

1. Introduction. Throughout this paper we will use Mn = Mn(C) to denote

the space of n × n complex-valued matrices. The real space of n × n hermitian

matrices will be denoted by Hn, and the space of all linear transformations on Mn,

by L(Mn).

A function
〈

〈·, ·〉
〉

:Mn ×Mn → Mn defined by
〈

〈A,B〉
〉

= B∗PA + AQB∗,

where P and Q are positive semidefinite and at least one is positive definite provides

a vectoral (matricial) inner product [1]. Using this function with various values of P

and Q in their Cone Generating Theorem has led Siler and Hill to a lattice of cones

[10], which may naturally be thought to reside in any of four real vector spaces.

These spaces may be viewed as third-stage generalizations of the real numbers and

hermitian matrices in the sense of Barker, Hill, and Haertel [2]. This paper provides

a survey of these ambient spaces and their properties.

In Section 2 we summarize information about the spaces HP (the hermitian-

preserving linear transformations),RP (the real-preserving linear transformations),

SA (the self-adjoint linear transformations), and the set GH which is a proper

subspace of SA. In Section 3 we examine the partition of L(Mn) induced by

intersections of HP , RP , SA, GH, and their complements.

For T ∈ L(Mn), we will use 〈T 〉 ∈ Mn2 to denote its representation with

respect to basis {Eij}i,j=1,... ,n ⊆ Mn ordered antilexicographically. For A ∈ Mn2 ,

we find it useful to denote its block form as A = (Aij) = (aijrs) ∈ Mn(Mn),

(i, j, r, s = 1, . . . , n). While all eight of the matrix reorderings of Oxenrider and

Hill [7] can be used in our study, for brevity we will restrict our results to Ψ and

Γ, defined by Ψ(A)ijrs = asjri and Γ(A)ijrs = airjs.
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2. The Spaces HP, RP, SA, and GH. The real vector space HP has

dimension n4 with one basis being given by the transformations represented by

the set consisting of: the n2 matrices Eij ⊗ Eij ; the (n4 − n2)/2 matrices (Eij +

Ekl) ⊗ (Eij + Ekl); and the (n4 − n2)/2 matrices (Eij + ιEkl) ⊗ (Eij − ιEkl) for

i, j, k, l = 1, . . . , n, where the last two sets are indexed such that (i, j) 6= (k, l) and

exactly one of (Eij +Ekl) and (Ekl +Eij) is chosen for fixed i, j, k, l, and ι2 = −1;

cf. [4].

Proofs of the following characterizations of HP can be found in [3, 4, 5, 8].

Theorem 2.1. For T ∈ L(Mn), the following are equivalent.

1. T ∈ HP.

2. tijrs = trsij , where 〈T 〉 =
(

(trsij )
)

.

3. There exist A1, . . . , As ∈ Mn, and real numbers δ1, . . . , δs, such that 〈T 〉 =
∑s

i=1 δiAi ⊗Ai, where s ≤ n2.

4. There exist A1, . . . , As ∈ Mn, and ε1, . . . , εs, that assume the values ±1, such

that 〈T 〉 =
∑s

i=1 εiAi ⊗Ai, where s ≤ n2.

5. There exist A1, . . . , As ∈ Mn, and (dij) ∈ Hs, such that 〈T 〉 =
∑s

i,j=1 dijAi⊗

Aj , where s ≤ n2.

6. The block matrix
(

T (Eij)
)

1≤i,j≤n
is hermitian in Mn2 .

7. Γ(〈T 〉) is hermitian in Mn2 .

8. Ψ(〈T 〉) is hermitian in Mn2 .

9. Γ
(

〈T 〉tr
)

is hermitian in Mn2 .

10. Ψ
(

〈T 〉tr
)

is hermitian in Mn2 .

11. T is skew-hermitian-preserving.

12. T ∗ is hermitian-preserving.

13.
(

T (A)
)∗

= T (A∗).

14. There exists U ∈ L(Mn) such that T (A) = U(A) + (U(A∗))∗ [5].

The real vector space RP also has dimension n4 with one basis being given by

the transformations represented by the set consisting of the n4 matrices Eij ⊗Ekl,

i, j, k, l = 1, . . . , n.

The following characterizations of RP have proofs much like those for HP .

In particular, many of them follow immediately from the specialization of κ̂ to the

identity map in Theorem 4.1 of [6].
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Theorem 2.2. For T ∈ L(Mn), the following are equivalent.

1. T ∈ RP.

2. tijrs = tijrs, where 〈T 〉 =
(

(trsij )
)

; i.e., 〈T 〉 ∈ Mn2(R).

3. There exist real numbers tijrs, for all i, j, r, s = 1, . . . , n, such that 〈T 〉 =
∑n

i,j,r,s=1 t
ij
rsEij ⊗ Ers.

4. There exist A1, . . . , As ∈ Mn(R), and (dij) ∈ Ms(R), such that 〈T 〉 =
∑s

i,j=1 dijAi ⊗Aj , where s ≤ n2.

5. The block matrix
(

T (Eij)
)

1≤i,j≤n
is real in Mn2 .

6. Γ
(

〈T 〉
)

is real in Mn2 .

7. Ψ
(

〈T 〉
)

is real in Mn2 .

8. Γ
(

〈T 〉tr
)

is real in Mn2 .

9. Ψ
(

〈T 〉tr
)

is real in Mn2 .

10. T is skew-real-preserving; i.e., T
(

Mn(ιR)
)

⊆ Mn(ιR).

11. T ∗ is real-preserving.

12.
(

T (A)
)

= T (A).

13. There exist V1, . . . , Vs ∈ Mn(R) and W1, . . . ,Ws ∈ Mn(R) such that T (A) =
∑s

i=1 ViAWi for all A ∈ Mn.

14. There exists U ∈ L(Mn) such that T (A) = U(A) +
(

U(A)
)

[5].

The real vector space of self-adjoint linear transformations, SA, also has di-

mension n4 with a basis given by the transformations with representations in the

subset ofMn2 consisting of the n2 matrices Ejj ; the (n
4−n2)/2 matrices Ejk+Ekj ;

and the (n4 − n2)/2 matrices ιEjk − ιEkj ; j, k = 1, . . . , n2.

For completeness we give the following characterizations of SA.

Theorem 2.3. For T ∈ L(Mn), the following are equivalent.

1. T ∈ SA.

2. If B is any orthonormal basis for Mn, then 〈T 〉B is hermitian.

3.
〈

T (A), B
〉

=
〈

A, T (B)
〉

for all A,B ∈ Mn.

4.
〈

T (A), A
〉

∈ R for all A ∈ Mn.

5. There exist A1, . . . , As ∈ Hn, and (dij) ∈ Ms(R), such that 〈T 〉 =
∑s

i,j=1 dijAi ⊗Aj , where s ≤ n2.

6. The block matrix
(

T (Eij)
)

1≤i,j≤n
represents a hermitian-preserving transfor-

mation.
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7. Γ
(

〈T 〉
)

represents a hermitian-preserving transformation.

8. Ψ
(

〈T 〉
)

represents a hermitian-preserving transformation.

9. Γ
(

〈T 〉tr
)

represents a hermitian-preserving transformation.

10. Ψ
(

〈T 〉tr
)

represents a hermitian-preserving transformation.

The hermitian matrices can be characterized in terms of inner products as

follows: Hn =
{

A ∈ Mn | 〈Ax, x〉 ∈ R for all x ∈ C
n
}

, where 〈x, y〉 = y∗x.

Generalizing this to linear transformations on Mn leads naturally to the follow-

ing definition: GH =
{

T ∈ L(Mn) |
〈

〈T (A), A〉
〉

∈ Hn for all A ∈ Mn

}

, where
〈

〈X,Y 〉
〉

= Y ∗X is a matricial inner product [10].

It can easily be verified that GH is a real vector space of dimension n2 with

a basis given by the transformations represented by the matrices I ⊗ Bjk, where
{

Bjk | j, k = 1, . . . , n
}

is any basis for Hn. (See Theorem 2.4 (6), below.)

Note in the following characterizations taken from [12] that any T ∈ GH is

completely determined by its action on I. Also, the equivalence of (2) and (3)

holds for any matricial inner product [10].

Theorem 2.4. For T ∈ L(Mn), the following are equivalent.

1. T ∈ GH.

2.
〈

〈T (A), A〉
〉

∈ Hn for all A ∈ Mn.

3.
〈

〈T (A), B〉
〉

=
〈

〈A, T (B)〉
〉

for all A,B ∈ Mn.

4. T (I) ∈ Hn and T (A) = T (I)A for all A ∈ Mn.

5. 〈T 〉 = I ⊗ T (I), where T (I) ∈ Hn; i.e., 〈T 〉 = (Tij) =
(

(tijrs)
)

, where i, j =

1, . . . , n, Tij = O, where i 6= j, Tjj = T (I), and for r, s = 1, . . . , n, tjjrs = tjjrs.

6. There exist A1, . . . , As ∈ Hn, and real numbers δ1, . . . , δs, such that 〈T 〉 =
∑s

i=1 δiI ⊗Ai, where s ≤ n2.

7. There exist A1, . . . , As ∈ Hn, and ε1, . . . , εs, that assume the values ±1, such

that 〈T 〉 =
∑s

i=1 εiI ⊗Ai, where s ≤ n2.

8. Ψ
(

〈T 〉
)

= S ⊗ vec
(

T (I)
)

, where S is the 1 × n2 matrix with 1 in each of the

positions 1, n+ 2, 2n+ 3, . . . , n2, and 0 elsewhere, and T (I) ∈ Hn.

9. Γ
(

〈T 〉
)

= Str ⊗
(

vec
(

T (I)
)tr)tr

, where S is the matrix defined in part 8, and

T (I) ∈ Hn.

10. The block matrix
(

T (Eij)
)

=
(

(ej)
tr ⊗T (I)(i)

)

, where T (I) ∈ Hn, and T (I)(i)

represents the ith column of T (I).
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11. T ∗ ∈ GH.

12. There exists H ∈ Hn such that T (A) = HA for all A ∈ Mn.

It can easily be verified that GH is neither closed under composition nor under

∗-congruence (conjuctivity). For completeness, we list a few more properties from

[12].

Theorem 2.5. For T ∈ GH:

1. 〈T 〉 = I ⊗ T (I).

2. 〈T 〉 is unitarily diagonalizable.

3. If the distinct eigenvalues of T (I) are λ1, . . . , λs, with algebraic multiplici-

ties p1, . . . , ps, respectively, and x1, . . . , xn is a complete set of orthonormal

eigenvectors of T (I), then the distinct eigenvalues of 〈T 〉 are λ1, . . . , λs with al-

gebraic multiplicities np1, . . . , nps, respectively, and {ej⊗xk | j, k = 1, . . . , n}

is a complete set of orthonormal eigenvectors of 〈T 〉.

Theorem 2.6. If T ∈ GH, and T (I) is nonsingular, then for any A ∈ Mn,

1. there exists a constant, c, such that det
(

T (A)
)

= c det(A) and

2. rank
(

T (A)
)

= rank(A).

3. Interrelationships. While there are 16 possible intersections of the four

real spacesHP , RP , SA, and GA and their (set) complements in L(Mn), only 11 of

these intersections are nonempty. The following Venn diagram shows the partition

induced by these spaces with the representative transformations from each piece

defined below. We assume that n ≥ 2 since for n = 1, HP = RP = SA = GH are

all simply the set of real numbers.
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Definitions of Representative Transformations.

T1(A) = A.

T2(A) = tr(A)I, where tr(A) denotes the trace of A.

T3(A) = E11AE12 + E21AE11.

T4(A) = ιE21AE21 − ιE12AE12.

T5(A) = ιE22AE11 − ιE11AE22.

T6(A) = E11A.

T7(A) = E12AE11 + E21AE11.

T8(A) = E11AE11 + 3E12AE11.

T9(A) = ιE12A− ιE21A.

T10(A) = (2 + ι)E12AE11 + (2 − ι)E21AE11.

T11(A) = ιA.
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