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SOME REMARKS ON THE SUM OF AN OLD SERIES

Rasul A. Khan

In this note we use some combinatorial identities to derive a formula for the

sum of the series

S(p) =
∞
∑

n=0

(m+ n+ 1)p
(

n+m

m

)

xn, |x| < 1,

in the form P (x)/(1 − x)m+p+1, where P (x) is a polynomial of degree p − 1 with

known coefficients aj , 0 ≤ j ≤ p − 1. When specialized for m = 0, the resulting

sum gives a formula for

∞
∑

n=1

npxn (|x| < 1).

The general formula also provides an alternative method for determining the mo-

ments of a negative binomial distribution. Conversely, the negative binomial dis-

tribution can be used to find a recursive formula for the sum of the above series

S(p).

1. A Combinatorial Identity. In what follows we write

x(r) = x(x− 1)(x− 2) · · · (x− r + 1)

for any real x and positive integer r, and in particular x(r) = x!/(x− r)! if x is also

a positive integer, and x(0) = 1, etc. Also, for a function ψ(t), ψ(k)(a) denotes the

kth derivative evaluated at a. The identities in Lemma 1 can be found in disguised

forms in Feller [2]. These identities in turn imply the main identity in Lemma 2.

A generating function method is used for their proofs for the sake of completeness.
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Lemma 1. For any real number m and positive integers n and r we have

(a)

n
∑

j=0

(−1)j(m− j)r
(

n

j

)

=

{

0, for all r < n,

n!, for r = n.

(b)

n
∑

j=0

(−1)j
(

n

j

)

(n+m− j)(r) =

{

0, for all r < n,

n!, for r = n.

Proof. Let

g(t) = emt(1− e−t)n =

n
∑

j=0

(−1)j
(

n

j

)

exp((m− j)t).

Since g(r)(0) = 0 for all r < n, and g(n)(0) = n!, (a) follows. Now let

g1(t) = tm(t− 1)n =

n
∑

j=0

(−1)j
(

n

j

)

tm+n−j .

Since g
(r)
1 (1) = 0 for all r < n, and g(n)(1) = n!, (b) follows.

To state the second lemma we define the following sequence an for positive

integers m and p. This sequence is needed to find the sum of the series S(p). The

sequence an is defined as:

an =
n
∑

i=0

(−1)i(m+ n+ 1− i)p
(

m+ p+ 1

i

)(

n+m− i

m

)

. (1)

Lemma 2.

n
∑

j=0

(−1)j(m+ n+ 1− j)p
(

n

j

)

(m+ n− j)(r) = 0, r = n− p− 1.



90 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Moreover, an = 0 for all n ≥ p, where an is defined by (1).

Proof. Let g(t) = tm exp((m+ 1)(t− 1))(tet−1 − 1)n. Clearly,

g(t) =
n
∑

j=0

(−1)j
(

n

j

)

tm+n−j exp((m+ n+ 1− j)(t− 1)). (2)

Let f1(t) = tm+n−j and f2(t) = exp((m+ n+ 1− j)(t− 1)). Obviously,

f
(r)
1 (1) = (m+ n− j)(r), r = n− p− 1, and f

(p)
2 (1) = (m+ n+ 1− j)p.

It is easy to verify that g(k)(1) = 0 for all k < n. By repeated differentiation of (2)

and repeated use of Lemma 1 we obtain

n
∑

j=0

(−1)j
(

n

j

)

f
(α)
1 (1)f

(β)
2 (1) = 0, α+ β = k < n. (3)

In particular, (3) holds if α = n− p− 1 and β = p, and the identity is proved. To

prove the noted property of an we consider two separate cases. If n = p, we have

(m+ p+ 1− i)p
(

m+ p+ 1

i

)(

p+m− i

m

)

=
(m+ p+ 1)!

m!p!
(m+ p+ 1− i)p−1

(

p

i

)

,

and ap = 0 by Lemma 1(a). If n > p (i.e. n ≥ p+ 1) we write

(

m+ p+ 1

i

)(

n+m− i

m

)

=
(m+ p+ 1)!

m!n!

(

n

i

)

(n+m− i)(r), r = n− p− 1.

Then, “showing an = 0 for all n > p” is equivalent to the main identity in Lemma

2. Hence, an = 0 for all n ≥ p.

2. An Application. The mth derivative of the geometric series

∞
∑

n=0

xn = (1− x)−1, |x| < 1,
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gives the well-known sum [4]

∞
∑

n=0

(

n+m

m

)

xn =
1

(1− x)m+1
, |x| < 1. (4)

If 0 < x < 1, then

f(n;m,x) =

(

n+m

m

)

(1 − x)m+1xn, n = 0, 1, 2, . . .

is the probability function of a negative binomial distribution, and (4) can be in-

terpreted as

∞
∑

n=0

f(n;m,x) = 1 (cf. [2]).

Motivated by this observation and the related moments problem we seek to derive

a formula for

∞
∑

n=0

(m+ n+ 1)p
(

n+m

m

)

xn, |x| < 1,

where m (≥ 0) and p (≥ 0) are integers. It is claimed that

∞
∑

n=0

(m+ n+ 1)p
(

n+m

m

)

xn =
P (x)

(1− x)m+p+1
, |x| < 1, (5)

where

P (x) =

p−1
∑

j=0

ajx
j
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with known coefficients aj (0 ≤ j ≤ p− 1), and P (x) = 1 if p = 0. To see this, let

bn = (m+ n+ 1)p
(

n+m

m

)

, cn = (−1)n
(

m+ p+ 1

n

)

,

and consider the power series

A =

∞
∑

n=0

bnx
n, and B = (1− x)m+p+1 =

m+p+1
∑

n=0

cnx
n.

Then

AB =

∞
∑

n=0

anx
n

by the Cauchy product formula, and for n = 0, 1, 2, . . . , the coefficients an are given

by (1). Since an = 0 for all n ≥ p by Lemma 2,

AB =

p−1
∑

n=0

anx
n = P (x), and A = P (x)/B,

and (5) follows.

Special Case. Put m = 0 in (5), and the formula becomes

∞
∑

n=0

(n+ 1)pxn =

∞
∑

n=1

npxn−1 =
P (x)

(1− x)p+1
, (6)

where

P (x) =

p−1
∑

j=0

ajx
j ,
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and an in (1) reduces to

an =
n
∑

i=0

(−1)i(n+ 1− i)p
(

p+ 1

i

)

.

Clearly, a0 = 1 and an = 0 for all n ≥ p. In this special case there is one more

interesting observation, namely, ap−1 = 1 for all p ≥ 1. This can be seen by noting

that

ap−1 =

p−1
∑

i=0

(−1)i(p− i)p
(

p+ 1

i

)

=

p+1
∑

i=0

(−1)i(p− i)p
(

p+ 1

i

)

− (−1)p+1(−1)p

=

p+1
∑

i=0

(−1)i(p− i)p
(

p+ 1

i

)

+ 1.

The last sum is clearly zero by Lemma 1(a), and hence, ap−1 = 1 for all p ≥ 1.

Obviously, (6) gives a formula for

∞
∑

n=1

npxn

as

xP (x)

(1− x)p+1
,

which was also noted by Clarke [1] and Stalley [4]. Another curious observation

is worth mentioning. Since P (x) is a polynomial of degree p − 1 and the aj ’s are

integers,

Sp =

∞
∑

n=1

np

2n
= 2pP

(

1

2

)
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is always an even integer. It follows from (5) that

Sp(m) =
∞
∑

n=1

(n+m)p
(

n+m− 1

m

)

1

2n
= 2p+mP

(

1

2

)

is also an even integer for any m ≥ 0 and p ≥ 0. Clearly, Sp = 2p + 2p−1a1 +

2p−2a2 + · · · + 2. In this special case one can easily check that S1 = 2, p = 2,

a1 = 1, S2 = 6, p = 3, a1 = 4, a2 = 1, S3 = 26, p = 4, a1 = 11, a2 = 11, a3 = 1,

S4 = 150, and p = 5, a1 = 26, a2 = 66, a3 = 26, a5 = 1, S5 = 1082, etc.

3. A Probabilistic Approach and a Recursive Formula for S(p). Let

0 < x < 1, and

P (ν = n) = f(n;m,x) =

(

n+m

m

)

(1− x)m+1xn, n = 0, 1, 2, . . .

be the probability function of a negative binomial distribution (cf. [2]). Let X =

ν +m+1. Then the pth moment of X can be obtained from (5), which is given by

EXp = E(ν +m+ 1)p =

∞
∑

n=0

(n+m+ 1)pP (ν = n) =
P (x)

(1− x)p
. (7)

In particular, if p = 1, then a0 = m+ 1, and EX = (m+ 1)/(1− x), and if p = 2,

then a0 = (m+ 1)2, a1 = m+ 1, and

EX2 =
(m+ 1)2 + (m+ 1)x

(1 − x)2
.

Moreover, it is obvious that the variance σ2 = E(X − EX)2 = EX2 − (EX)2) =

(m+1)x/(1−x)2. These formulas are known in the literature where it is customary

to use q for x and p for 1− x, and r = m+ 1. Of course, any moment of X can be

calculated from (7).
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There is an alternative derivation of the sum

S(p) =

∞
∑

n=0

(n+m+ 1)p
(

n+m

m

)

xn

by calculus via the negative binomial distribution. This interesting interplay be-

tween S(p) and the negative binomial distribution is now discussed. This method

produces a recursive formula for S(p). For simplicity we write r = m+ 1 (m being

a positive integer) in the above negative binomial distribution. Thus,

f(n; r, x) = (1− x)r
(

r + n− 1

r − 1

)

xn, n = 0, 1, 2, . . . ,

and the associated moment generating function φ∗(θ) = E exp(θX) is given by

φ∗(θ) =

∞
∑

n=0

enθf(n; r, x) =
(1− x)r

(1− xeθ)r
=

1

(1− β(eθ − 1))r
, θ < − lnx,

where β = x/(1− x). Consequently,

φ(θ) = E exp(θ(X + r)) = exp(rθ)/(1 − β(eθ − 1))r,

and φ′(θ) = r(1 + β)φ(θ)/(1 − β(eθ − 1)). Thus,

φ′(θ)(1 − β(eθ − 1)) = r(1 + β)φ(θ). (8)

Differentiating (8) p− 1 (p ≥ 1) times, by Leibniz’s formula we have

p−1
∑

j=0

(

p− 1

j

)

φ(j+1)(θ)(1 − β(eθ − 1))(p−1−j) = r(1 + β)φ(p−1)(θ),
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which evaluated at θ = 0 gives

−β

p−2
∑

j=0

(

p− 1

j

)

φ(j+1)(0) + φ(p)(0) = r(1 + β)φ(p−1)(0).

This can be written as

−β

p−1
∑

j=1

(

p− 1

j − 1

)

φ(j)(0) + φ(p)(0) = r(1 + β)φ(p−1)(0).

Since

(

p− 1

j − 1

)

=
j

p

(

p

j

)

,

we obtain

φ(p)(0) = β

p−1
∑

j=1

j

p

(

p

j

)

φ(j)(0) + r(1 + β)φ(p−1)(0)

= β

p−1
∑

j=1

p− p+ j

p

(

p

j

)

φ(j)(0) + r(1 + β)φ(p−1)(0)

= β

p−1
∑

j=1

(

p

j

)

φ(j)(0)− β

p−1
∑

j=1

p− j

p

(

p

j

)

φ(j)(0) + r(1 + β)φ(p−1)(0).

Since

p− j

p

(

p

j

)

=

(

p− 1

j

)

,
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we have

φ(p)(0) = β

p−1
∑

j=1

(

p

j

)

φ(j)(0)− β

p−1
∑

j=1

(

p− 1

j

)

φ(j)(0) + r(1 + β)φ(p−1)(0). (9)

This recursive formula can be used for computing moments E(X+r)p. Equivalently,

it can be used to find the sum

S(p) =
∞
∑

n=0

(n+ r)p
(

n+ r − 1

r − 1

)

xn,

and since r = m+ 1,

S(p) =

∞
∑

n=0

(n+m+ 1)p
(

n+m

m

)

xn.

It is clear from the definition of the generating function φ(θ) that S(p) =

φ(p)(0)/(1− x)r for each p ≥ 0. Dividing equation (9) by (1− x)r we obtain

S(p) = β

p−1
∑

j=1

(

p

j

)

S(j)− β

p−1
∑

j=1

(

p− 1

j

)

S(j) + r(1 + β)S(p− 1),

which can be written as

S(p) = β

(

1+

p−1
∑

j=1

(

p

j

)

S(j)

)

− β

(

1+

p−1
∑

j=0

(

p− 1

j

)

S(j)

)

+ r(1 + β)S(p− 1). (10)

This can be used to find S(p) in a recursive manner for any desired p. Con-

versely, (10) can also be used to determine the moments of the negative binomial

distribution. Suppose we want to determine

S1(p) = xS(p) =

∞
∑

n=0

(n+m+ 1)p
(

n+m

m

)

xn+1.
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It is obvious from (10) that the same recursive equation holds for S1(p) also. An

interesting recursive equation arises if m = 0 (i.e., r = 1). In this case (10) becomes

S1(p) = β

(

1 +

p−1
∑

j=0

(

p

j

)

S1(j)

)

− β

(

1 +

p−1
∑

j=0

(

p− 1

j

)

S1(j)

)

+ (1 + β)S1(p− 1).

This can be written as

S1(p) = β

(

1 +

p−1
∑

j=0

(

p

j

)

S1(j)

)

− β

(

1 +

p−2
∑

j=0

(

p− 1

j

)

S1(j)

)

+ S1(p− 1), (11)

where

S1(p) =

∞
∑

n=0

(n+ 1)pxn+1 =

∞
∑

n=1

npxn.

Note that (11) implies

S1(p) = β

(

1 +

p−1
∑

j=0

(

p

j

)

S1(j)

)

(12)

by induction. The recursive formula (12) was derived in [3] by the telescoping

method. If x = 1/2, then β = 1, and since S1(0) = 1, it is found that S1(1) = 2,

S1(2) = 6, S1(3) = 26, S1(4) = 150, S1(5) = 1082, etc. which were obtained in the

preceding section by the combinatorial method.
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