SOME REMARKS ON THE SUM OF AN OLD SERIES

Rasul A. Khan

In this note we use some combinatorial identities to derive a formula for the sum of the series

$$
S(p)=\sum_{n=0}^{\infty}(m+n+1)^{p}\binom{n+m}{m} x^{n}, \quad|x|<1,
$$

in the form $P(x) /(1-x)^{m+p+1}$, where $P(x)$ is a polynomial of degree $p-1$ with known coefficients $a_{j}, 0 \leq j \leq p-1$. When specialized for $m=0$, the resulting sum gives a formula for

$$
\sum_{n=1}^{\infty} n^{p} x^{n} \quad(|x|<1)
$$

The general formula also provides an alternative method for determining the moments of a negative binomial distribution. Conversely, the negative binomial distribution can be used to find a recursive formula for the sum of the above series $S(p)$.

1. A Combinatorial Identity. In what follows we write

$$
x_{(r)}=x(x-1)(x-2) \cdots(x-r+1)
$$

for any real x and positive integer r, and in particular $x_{(r)}=x!/(x-r)!$ if x is also a positive integer, and $x_{(0)}=1$, etc. Also, for a function $\psi(t), \psi^{(k)}(a)$ denotes the k th derivative evaluated at a. The identities in Lemma 1 can be found in disguised forms in Feller [2]. These identities in turn imply the main identity in Lemma 2. A generating function method is used for their proofs for the sake of completeness.

Lemma 1. For any real number m and positive integers n and r we have
(a) $\sum_{j=0}^{n}(-1)^{j}(m-j)^{r}\binom{n}{j}= \begin{cases}0, & \text { for all } r<n, \\ n!, & \text { for } r=n .\end{cases}$
(b) $\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(n+m-j)_{(r)}= \begin{cases}0, & \text { for all } r<n, \\ n!, & \text { for } r=n .\end{cases}$

Proof. Let

$$
g(t)=e^{m t}\left(1-e^{-t}\right)^{n}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \exp ((m-j) t)
$$

Since $g^{(r)}(0)=0$ for all $r<n$, and $g^{(n)}(0)=n!$, (a) follows. Now let

$$
g_{1}(t)=t^{m}(t-1)^{n}=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} t^{m+n-j}
$$

Since $g_{1}^{(r)}(1)=0$ for all $r<n$, and $g^{(n)}(1)=n!$, (b) follows.
To state the second lemma we define the following sequence a_{n} for positive integers m and p. This sequence is needed to find the sum of the series $S(p)$. The sequence a_{n} is defined as:

$$
\begin{equation*}
a_{n}=\sum_{i=0}^{n}(-1)^{i}(m+n+1-i)^{p}\binom{m+p+1}{i}\binom{n+m-i}{m} \tag{1}
\end{equation*}
$$

Lemma 2.

$$
\sum_{j=0}^{n}(-1)^{j}(m+n+1-j)^{p}\binom{n}{j}(m+n-j)_{(r)}=0, r=n-p-1
$$

Moreover, $a_{n}=0$ for all $n \geq p$, where a_{n} is defined by (1).
Proof. Let $g(t)=t^{m} \exp ((m+1)(t-1))\left(t e^{t-1}-1\right)^{n}$. Clearly,

$$
\begin{equation*}
g(t)=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} t^{m+n-j} \exp ((m+n+1-j)(t-1)) \tag{2}
\end{equation*}
$$

Let $f_{1}(t)=t^{m+n-j}$ and $f_{2}(t)=\exp ((m+n+1-j)(t-1))$. Obviously,

$$
f_{1}^{(r)}(1)=(m+n-j)_{(r)}, r=n-p-1, \text { and } f_{2}^{(p)}(1)=(m+n+1-j)^{p}
$$

It is easy to verify that $g^{(k)}(1)=0$ for all $k<n$. By repeated differentiation of (2) and repeated use of Lemma 1 we obtain

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} f_{1}^{(\alpha)}(1) f_{2}^{(\beta)}(1)=0, \alpha+\beta=k<n \tag{3}
\end{equation*}
$$

In particular, (3) holds if $\alpha=n-p-1$ and $\beta=p$, and the identity is proved. To prove the noted property of a_{n} we consider two separate cases. If $n=p$, we have

$$
(m+p+1-i)^{p}\binom{m+p+1}{i}\binom{p+m-i}{m}=\frac{(m+p+1)!}{m!p!}(m+p+1-i)^{p-1}\binom{p}{i}
$$

and $a_{p}=0$ by Lemma 1 (a). If $n>p$ (i.e. $n \geq p+1$) we write

$$
\binom{m+p+1}{i}\binom{n+m-i}{m}=\frac{(m+p+1)!}{m!n!}\binom{n}{i}(n+m-i)_{(r)}, \quad r=n-p-1
$$

Then, "showing $a_{n}=0$ for all $n>p$ " is equivalent to the main identity in Lemma 2. Hence, $a_{n}=0$ for all $n \geq p$.
2. An Application. The m th derivative of the geometric series

$$
\sum_{n=0}^{\infty} x^{n}=(1-x)^{-1}, \quad|x|<1
$$

gives the well-known sum [4]

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{n+m}{m} x^{n}=\frac{1}{(1-x)^{m+1}}, \quad|x|<1 \tag{4}
\end{equation*}
$$

If $0<x<1$, then

$$
f(n ; m, x)=\binom{n+m}{m}(1-x)^{m+1} x^{n}, \quad n=0,1,2, \ldots
$$

is the probability function of a negative binomial distribution, and (4) can be interpreted as

$$
\sum_{n=0}^{\infty} f(n ; m, x)=1 \quad(c f .[2])
$$

Motivated by this observation and the related moments problem we seek to derive a formula for

$$
\sum_{n=0}^{\infty}(m+n+1)^{p}\binom{n+m}{m} x^{n}, \quad|x|<1
$$

where $m(\geq 0)$ and $p(\geq 0)$ are integers. It is claimed that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(m+n+1)^{p}\binom{n+m}{m} x^{n}=\frac{P(x)}{(1-x)^{m+p+1}}, \quad|x|<1, \tag{5}
\end{equation*}
$$

where

$$
P(x)=\sum_{j=0}^{p-1} a_{j} x^{j}
$$

with known coefficients $a_{j}(0 \leq j \leq p-1)$, and $P(x)=1$ if $p=0$. To see this, let

$$
b_{n}=(m+n+1)^{p}\binom{n+m}{m}, \quad c_{n}=(-1)^{n}\binom{m+p+1}{n}
$$

and consider the power series

$$
A=\sum_{n=0}^{\infty} b_{n} x^{n}, \text { and } B=(1-x)^{m+p+1}=\sum_{n=0}^{m+p+1} c_{n} x^{n}
$$

Then

$$
A B=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

by the Cauchy product formula, and for $n=0,1,2, \ldots$, the coefficients a_{n} are given by (1). Since $a_{n}=0$ for all $n \geq p$ by Lemma 2 ,

$$
A B=\sum_{n=0}^{p-1} a_{n} x^{n}=P(x), \text { and } A=P(x) / B
$$

and (5) follows.
Special Case. Put $m=0$ in (5), and the formula becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty}(n+1)^{p} x^{n}=\sum_{n=1}^{\infty} n^{p} x^{n-1}=\frac{P(x)}{(1-x)^{p+1}} \tag{6}
\end{equation*}
$$

where

$$
P(x)=\sum_{j=0}^{p-1} a_{j} x^{j}
$$

and a_{n} in (1) reduces to

$$
a_{n}=\sum_{i=0}^{n}(-1)^{i}(n+1-i)^{p}\binom{p+1}{i}
$$

Clearly, $a_{0}=1$ and $a_{n}=0$ for all $n \geq p$. In this special case there is one more interesting observation, namely, $a_{p-1}=1$ for all $p \geq 1$. This can be seen by noting that

$$
\begin{aligned}
a_{p-1} & =\sum_{i=0}^{p-1}(-1)^{i}(p-i)^{p}\binom{p+1}{i}=\sum_{i=0}^{p+1}(-1)^{i}(p-i)^{p}\binom{p+1}{i}-(-1)^{p+1}(-1)^{p} \\
& =\sum_{i=0}^{p+1}(-1)^{i}(p-i)^{p}\binom{p+1}{i}+1
\end{aligned}
$$

The last sum is clearly zero by Lemma 1 (a), and hence, $a_{p-1}=1$ for all $p \geq 1$. Obviously, (6) gives a formula for

$$
\sum_{n=1}^{\infty} n^{p} x^{n}
$$

as

$$
\frac{x P(x)}{(1-x)^{p+1}}
$$

which was also noted by Clarke [1] and Stalley [4]. Another curious observation is worth mentioning. Since $P(x)$ is a polynomial of degree $p-1$ and the a_{j} 's are integers,

$$
S_{p}=\sum_{n=1}^{\infty} \frac{n^{p}}{2^{n}}=2^{p} P\left(\frac{1}{2}\right)
$$

is always an even integer. It follows from (5) that

$$
S_{p}(m)=\sum_{n=1}^{\infty}(n+m)^{p}\binom{n+m-1}{m} \frac{1}{2^{n}}=2^{p+m} P\left(\frac{1}{2}\right)
$$

is also an even integer for any $m \geq 0$ and $p \geq 0$. Clearly, $S_{p}=2^{p}+2^{p-1} a_{1}+$ $2^{p-2} a_{2}+\cdots+2$. In this special case one can easily check that $S_{1}=2, p=2$, $a_{1}=1, S_{2}=6, p=3, a_{1}=4, a_{2}=1, S_{3}=26, p=4, a_{1}=11, a_{2}=11, a_{3}=1$, $S_{4}=150$, and $p=5, a_{1}=26, a_{2}=66, a_{3}=26, a_{5}=1, S_{5}=1082$, etc.
3. A Probabilistic Approach and a Recursive Formula for $\mathbf{S}(\mathbf{p})$. Let $0<x<1$, and

$$
P(\nu=n)=f(n ; m, x)=\binom{n+m}{m}(1-x)^{m+1} x^{n}, \quad n=0,1,2, \ldots
$$

be the probability function of a negative binomial distribution (cf. [2]). Let $X=$ $\nu+m+1$. Then the p th moment of X can be obtained from (5), which is given by

$$
\begin{equation*}
E X^{p}=E(\nu+m+1)^{p}=\sum_{n=0}^{\infty}(n+m+1)^{p} P(\nu=n)=\frac{P(x)}{(1-x)^{p}} \tag{7}
\end{equation*}
$$

In particular, if $p=1$, then $a_{0}=m+1$, and $E X=(m+1) /(1-x)$, and if $p=2$, then $a_{0}=(m+1)^{2}, a_{1}=m+1$, and

$$
E X^{2}=\frac{(m+1)^{2}+(m+1) x}{(1-x)^{2}}
$$

Moreover, it is obvious that the variance $\left.\sigma^{2}=E(X-E X)^{2}=E X^{2}-(E X)^{2}\right)=$ $(m+1) x /(1-x)^{2}$. These formulas are known in the literature where it is customary to use q for x and p for $1-x$, and $r=m+1$. Of course, any moment of X can be calculated from (7).

There is an alternative derivation of the sum

$$
S(p)=\sum_{n=0}^{\infty}(n+m+1)^{p}\binom{n+m}{m} x^{n}
$$

by calculus via the negative binomial distribution. This interesting interplay between $S(p)$ and the negative binomial distribution is now discussed. This method produces a recursive formula for $S(p)$. For simplicity we write $r=m+1$ (m being a positive integer) in the above negative binomial distribution. Thus,

$$
f(n ; r, x)=(1-x)^{r}\binom{r+n-1}{r-1} x^{n}, \quad n=0,1,2, \ldots
$$

and the associated moment generating function $\phi^{*}(\theta)=E \exp (\theta X)$ is given by

$$
\phi^{*}(\theta)=\sum_{n=0}^{\infty} e^{n \theta} f(n ; r, x)=\frac{(1-x)^{r}}{\left(1-x e^{\theta}\right)^{r}}=\frac{1}{\left(1-\beta\left(e^{\theta}-1\right)\right)^{r}}, \quad \theta<-\ln x
$$

where $\beta=x /(1-x)$. Consequently,

$$
\phi(\theta)=E \exp (\theta(X+r))=\exp (r \theta) /\left(1-\beta\left(e^{\theta}-1\right)\right)^{r}
$$

and $\phi^{\prime}(\theta)=r(1+\beta) \phi(\theta) /\left(1-\beta\left(e^{\theta}-1\right)\right)$. Thus,

$$
\begin{equation*}
\phi^{\prime}(\theta)\left(1-\beta\left(e^{\theta}-1\right)\right)=r(1+\beta) \phi(\theta) \tag{8}
\end{equation*}
$$

Differentiating (8) $p-1(p \geq 1)$ times, by Leibniz's formula we have

$$
\sum_{j=0}^{p-1}\binom{p-1}{j} \phi^{(j+1)}(\theta)\left(1-\beta\left(e^{\theta}-1\right)\right)^{(p-1-j)}=r(1+\beta) \phi^{(p-1)}(\theta)
$$

which evaluated at $\theta=0$ gives

$$
-\beta \sum_{j=0}^{p-2}\binom{p-1}{j} \phi^{(j+1)}(0)+\phi^{(p)}(0)=r(1+\beta) \phi^{(p-1)}(0) .
$$

This can be written as

$$
-\beta \sum_{j=1}^{p-1}\binom{p-1}{j-1} \phi^{(j)}(0)+\phi^{(p)}(0)=r(1+\beta) \phi^{(p-1)}(0)
$$

Since

$$
\binom{p-1}{j-1}=\frac{j}{p}\binom{p}{j}
$$

we obtain

$$
\begin{aligned}
\phi^{(p)}(0) & =\beta \sum_{j=1}^{p-1} \frac{j}{p}\binom{p}{j} \phi^{(j)}(0)+r(1+\beta) \phi^{(p-1)}(0) \\
& =\beta \sum_{j=1}^{p-1} \frac{p-p+j}{p}\binom{p}{j} \phi^{(j)}(0)+r(1+\beta) \phi^{(p-1)}(0) \\
& =\beta \sum_{j=1}^{p-1}\binom{p}{j} \phi^{(j)}(0)-\beta \sum_{j=1}^{p-1} \frac{p-j}{p}\binom{p}{j} \phi^{(j)}(0)+r(1+\beta) \phi^{(p-1)}(0) .
\end{aligned}
$$

Since

$$
\frac{p-j}{p}\binom{p}{j}=\binom{p-1}{j}
$$

we have

$$
\begin{equation*}
\phi^{(p)}(0)=\beta \sum_{j=1}^{p-1}\binom{p}{j} \phi^{(j)}(0)-\beta \sum_{j=1}^{p-1}\binom{p-1}{j} \phi^{(j)}(0)+r(1+\beta) \phi^{(p-1)}(0) \tag{9}
\end{equation*}
$$

This recursive formula can be used for computing moments $E(X+r)^{p}$. Equivalently, it can be used to find the sum

$$
S(p)=\sum_{n=0}^{\infty}(n+r)^{p}\binom{n+r-1}{r-1} x^{n}
$$

and since $r=m+1$,

$$
S(p)=\sum_{n=0}^{\infty}(n+m+1)^{p}\binom{n+m}{m} x^{n}
$$

It is clear from the definition of the generating function $\phi(\theta)$ that $S(p)=$ $\phi^{(p)}(0) /(1-x)^{r}$ for each $p \geq 0$. Dividing equation (9) by $(1-x)^{r}$ we obtain

$$
S(p)=\beta \sum_{j=1}^{p-1}\binom{p}{j} S(j)-\beta \sum_{j=1}^{p-1}\binom{p-1}{j} S(j)+r(1+\beta) S(p-1)
$$

which can be written as

$$
\begin{equation*}
S(p)=\beta\left(1+\sum_{j=1}^{p-1}\binom{p}{j} S(j)\right)-\beta\left(1+\sum_{j=0}^{p-1}\binom{p-1}{j} S(j)\right)+r(1+\beta) S(p-1) \tag{10}
\end{equation*}
$$

This can be used to find $S(p)$ in a recursive manner for any desired p. Conversely, (10) can also be used to determine the moments of the negative binomial distribution. Suppose we want to determine

$$
S_{1}(p)=x S(p)=\sum_{n=0}^{\infty}(n+m+1)^{p}\binom{n+m}{m} x^{n+1}
$$

It is obvious from (10) that the same recursive equation holds for $S_{1}(p)$ also. An interesting recursive equation arises if $m=0$ (i.e., $r=1$). In this case (10) becomes

$$
S_{1}(p)=\beta\left(1+\sum_{j=0}^{p-1}\binom{p}{j} S_{1}(j)\right)-\beta\left(1+\sum_{j=0}^{p-1}\binom{p-1}{j} S_{1}(j)\right)+(1+\beta) S_{1}(p-1)
$$

This can be written as

$$
\begin{equation*}
S_{1}(p)=\beta\left(1+\sum_{j=0}^{p-1}\binom{p}{j} S_{1}(j)\right)-\beta\left(1+\sum_{j=0}^{p-2}\binom{p-1}{j} S_{1}(j)\right)+S_{1}(p-1) \tag{11}
\end{equation*}
$$

where

$$
S_{1}(p)=\sum_{n=0}^{\infty}(n+1)^{p} x^{n+1}=\sum_{n=1}^{\infty} n^{p} x^{n}
$$

Note that (11) implies

$$
\begin{equation*}
S_{1}(p)=\beta\left(1+\sum_{j=0}^{p-1}\binom{p}{j} S_{1}(j)\right) \tag{12}
\end{equation*}
$$

by induction. The recursive formula (12) was derived in [3] by the telescoping method. If $x=1 / 2$, then $\beta=1$, and since $S_{1}(0)=1$, it is found that $S_{1}(1)=2$, $S_{1}(2)=6, S_{1}(3)=26, S_{1}(4)=150, S_{1}(5)=1082$, etc. which were obtained in the preceding section by the combinatorial method.

$$
\underline{\text { References }}
$$

1. E. H. Clarke, "A Formula for the Sum of a Certain Type of Infinite Power Series," American Mathematical Monthly, 21 (1914), 292-296.
2. W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 1968.
3. R. A. Khan, "Another Elementary Proof of the Convergence-Divergence of the p-Series," Missouri Journal of Mathematical Sciences, 16 (2004), 104-107.
4. K. Knopp, Theory and Applications of Infinite Series, Blackie \& Son Ltd., London, 1928.
5. R. Stalley, "A Generalization of the Geometric Series," American Mathematical Monthly, 56 (1949), 325-327.

Mathematics Subject Classification (2000): 40A25, 65B10; 40A99
Rasul A. Khan
Department of Mathematics
Cleveland State University
Cleveland, OH 44115
email: khan@math.csuohio.edu

