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ADDING SOMETHING EXTRA

Alan Safer, Angelo Segalla, and Saleem Watson

It requires more innate intellectual capacity

to dispose of this apparently childish thing

than to grasp the theory of relativity.

E. T. Bell

1. Introduction. The “thing” referred to in the above quote is the Diophan-
tine equation

y3 = x2 + 2

and to “dispose of” this thing is to find all its positive integer solutions [1]. It
is clear that x = 5 and y = 3 is a solution, but Fermat, as a challenge to other
mathematicians, asked for a proof that this is the only such solution [5]. The
challenge was met, more than a hundred years later, by Euler. Euler’s short proof
is easily followed by students taking a course in algebra or number theory. So what
would lead E. T. Bell to make such a bold claim for the proof?

Euler’s proof is remarkable because it uses complex numbers to prove something
about positive integers. In other words, extra structure is added to help unravel
the secret of the equation. This principle of “adding something extra” in a proof
is discussed by George Polya in his classic book How to Solve It [4]. So how does
adding extra structure help us solve a problem? In this note, we illustrate how this
principle works, then give a sketch of Euler’s proof in light of this principle. In our
classes, we have found that explicitly identifying when extra structure is added in a
proof gives students an appreciation for the ingenuity required to invent the proof,
as well as an understanding of a principle they can recognize when they encounter
its use in other proofs.

First, to see how adding something extra can help solve a problem, we consider
a simple problem where this principle is clearly and strikingly used.

2. The Maddening Mouse Maze. A maze is in the shape of a square with
six rooms to a side. Each room is connected by a door to each of its contiguous
neighbors. The entrance and exit are at diagonally opposite corners, as shown in
the figure below. A mouse entering the maze must pass through each room exactly
once in order for the exit door to open. What route should the mouse take?
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After several attempts the mouse might wonder whether such a route is pos-
sible. But how could the mouse give a convincing argument that no such route
exists? Here is a proof: Color the rooms alternately red and black in a checker-
board pattern. Observe that any route through the maze necessarily alternates
between red and black rooms. Since the maze has an even number of rooms, the
required path must begin and end in rooms of opposite color. But the entrance and
exit are in rooms of the same color, so traversing this maze is impossible!

The extra element: This short proof utilizes aspects entirely outside the original
problem. Indeed, coloring the rooms is not relevant – the maze either can or cannot
be traversed irrespective of the colors of the rooms. But adding color in the above
fashion is the extra element that allows us to give a convincing argument that
traversing the maze is impossible.

3. Back to Euler. Euler contemplated Fermat’s equation

y3 = x2 + 2 (1)

for many years. His eventual solution reaches far outside the realm of the positive
integers. Euler factored the right hand side to get the equation

y3 = (x+
√
−2)(x −

√
−2). (2)

This led him to look at the original Diophantine equation in a whole new setting:
What are the solutions in “algebraic integers” of the form m + n

√
−2 [2]? (By

analogy with the Maddening Mouse Maze, we can think ofm+n
√
−2 as a “colored”

version of the integer m). Of course every ordinary integer is one of these algebraic
integers, so finding the solutions in algebraic integers would also solve the original
problem. Here is how the added structure helps us find all the solutions of (1).

We begin by considering the collection

R = {m+ n
√
−2 : m,n ∈ Z}.
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Now R is a ring that has many of the same properties as the ring Z. For example,
like Z, the ring R has prime elements, that is, elements that cannot be factored
(excluding 1 and −1 as factors). And, like Z, the ring R has the crucial property of
unique factorization - that is, each element can be factored in an essentially unique
way (up to the order and sign of the factors) into prime elements of R [3]. For
example, in R we have 1 + 4

√
−2 = (3 +

√
−2)(1 +

√
−2) and each of these factors

is prime.
Now, it is not too difficult to show that x+

√
−2 and x−

√
−2 have no factor

in common in R. It follows from (2) and unique factorization that each of these
elements of R must itself be a cube. So, there are ordinary integers m and n such
that

(m+ n
√
−2)3 = x+

√
−2.

Expanding the left-hand side we get

m3 − 6mn2 + (3m2n− 2n3)
√
−2 = x+

√
−2.

Comparing coefficients of
√
−2 we get n(3m2 − 2n2) = 1. So we must have n = ±1

and 3m2 − 2n2 = ±1, from which we get m = ±1. Now equating the real parts
gives x = m3 − 6mn2, and so we must have x = ±5. Thus, x = 5 and y = 3 is the
only positive integer solution.

The extra element: Euler’s solution adds a whole extra dimension to the prob-
lem. He frees it from the confines of the positive integers and recasts it in the
setting of the ring of algebraic integers of the form m + n

√
−2. To begin with we

were not interested in solutions that contain
√
−2, but somehow this additional

structure provides the setting that unveils the mystery!

4. Conclusion. The principle of adding new structure to solve a problem
characterizes many of the great discoveries in mathematics. But the principle can
be applied to solve many ordinary problems. A common example in calculus courses
is evaluating an integral by trigonometric substitution – even though there are no
trigonometric functions in the integrand, substituting a trigonometric function for
the variable is the extra element needed to unravel the integral. It is interesting
and instructive to search for instances in mathematics where this principle is used.
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