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ON POSITIVE DERIVATIVES AND MONOTONICITY

Stephen D. Casey and Richard Holzsager

Abstract. A fundamental result of calculus states that a function f with a

positive derivative Df on an interval is increasing on that interval. This result

follows directly from the Mean Value Theorem. We explore the extent to which

the hypotheses of the Mean Value Theorem can be weakened and f still shown to

be increasing. Let f be a continuous function on an interval [a, b]. By constructing

counterexamples using Cantor-Lebesgue functions, we show that the assumption

Df > 0 a.e. does not imply that f is increasing. We can, however, show that if

Df > 0 except on a countable subset of an interval, then f is increasing. We call

this the Countable Exceptional Set Theorem. This theorem is generalized by the

Goldowsky-Tonelli Theorem, which tells us that if Df exists except on a countable

subset of an interval and Df > 0 a.e., then f is increasing. We then show that if

the exceptional set S is uncountable, then we can construct a continuous function

f for which Df > 0 on [a, b]\S, but for which f(a) > f(b). The key item is

that the exceptional set contains a perfect set. Moreover, this occurs whenever the

exceptional set is uncountable. Thus, in a very natural sense, Goldowsky-Tonelli is

a vacuous extention of the Countable Exceptional Set Theorem.

1. Introduction. One of the most fundamental and useful results from

calculus is that if a function f is differentiable with positive derivative Df on

an interval, then it is increasing there. If we assume f is continuous on [a, b]

and differentiable on (a, b), then the result follows directly from the Mean Value

Theorem. The purpose of this paper is to ask about generalizations of this result. In

particular, we want to obtain, given certain assumptions, the most straightforward

yet most general theorem possible. We will assume throughout the paper that all

of the functions considered in connection to our investigation are continuous. If we

do not assume continuity we can vary behavior at a single point and thus change

monotonicity.

The paper is structured around a dialog between the two authors, which boiled

down to answering two questions. The first question we asked was the following.

If we weaken the hypotheses of the Mean Value Theorem, does Df > 0 imply

that f is increasing?

As one would expect, the answer to our first question is no. To see this, we assume,

in addition to continuity, only that Df > 0 almost everywhere (a.e.), i.e., except
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on a set of Lebesgue measure zero. (The texts of Apostol [2], Boas [4], Royden

[18], Rudin [19, 20], or Wheeden and Zygmund [23] can be used as references for

background information for this paper.) This condition is too weak, as is shown by

the following example. Let C denote the Cantor-Lebesgue function associated with

the Cantor middle-thirds set. Let

f(x) =
x

2
+ C(1− x).

Then f is a continuous mapping on [0, 1] with

Df =
1

2
a.e.

However,

f(0) = 1 >
1

2
= f(1).

The function f is not increasing. Here, the risers of the Cantor-Lebesgue function,

which occur over the Cantor middle-thirds set, allow the function f to flow against

the derivative. Measure zero gives too much room allowing for this flow. Other

examples include

fα(x) = αx+ C(1− x) and gα(x) = αx− C(x), α ∈ (0, 1)

(see Figures 1 and 2). Moreover, these examples can be generalized. Given that

every Cantor set is homeomorphic to the Cantor middle-thirds set [12], we can

construct an associated Cantor-Lebesgue function, which is differentiable with zero

derivative on the complement of the set. Use this Cantor-Lebesgue function to

construct the example, as was done above.

This led to our second question.

Assuming that f is continuous on [a, b] and differentiable on (a, b) a.e., what

additional conditions can we impose on Df to guarantee that f is monotone

increasing?

We can formulate this second question in terms of sets.

Definition 1. Let f be continuous on [a, b] and suppose that Df > 0 on [a, b]\S.

Then S is called the exceptional set.
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What conditions can we put on S to guarantee that f is increasing? If we

assume that the exceptional set is countable, we can prove the following (Section

2.1). We refer to this as the Countable Exceptional Set Theorem.

Theorem 1. Let f be a continuous function on [a, b] and suppose that Df > 0

on [a, b]\S, where S is countable. Then f(a) < f(b).

A reading of Saks’ classic treatise Theory of the Integral [21] gives that this

result is generalized by the Goldowsky-Tonelli Theorem. (Also see [13].)

Theorem 2. (Goldowsky-Tonelli [9, 13, 21, 22]). Let f be a continuous func-

tion on [a, b] and suppose that Df exists (finite or infinite) on [a, b]\S where S is

countable. Also suppose that Df ≥ 0 a.e. on [a, b]. Then f is a non-decreasing

function on [a, b].

We give a proof of Goldowsky-Tonelli in the spirit of our paper in Section 2.2.

This still, however, does not answer our second question.

We give the answer in Section 3. We show that if the exceptional set S includes

a Cantor set, then we can construct a continuous function f for which Df > 0 on

[a, b]\S, but for which f(a) > f(b) (Theorem 4). Moreover, this occurs whenever

the exceptional set is uncountable (Theroems 5 and 6). The key item is that

whenever the exceptional set is uncountable, it contains a perfect set, and therefore

contains a Cantor set. This in turn shows that Goldowsky-Tonelli is a vacuous

extension of the Countable Exceptional Set Theorem, in that there are no additional

functions to which Goldowsky-Tonelli applies but Countable Exception does not

apply. Goldowsky-Tonelli, however, requires less information. Given a function

satisfying the hypotheses of Goldowsky-Tonelli, one needs Goldowsky-Tonelli to

show that it satisfies the hypotheses of Countable Exception.

There are generalizations of Goldowsky-Tonelli. In particular, there are the-

orems of Tolstoff and Zahorski [5]. Both of these weaken the condition that f is

continuous. In fact, by introducing generalizations of continuity and differentiabil-

ity, a variety of theorems can be derived. An excellent discussion of these can be

found in Chapter XI of [5].

Note that general Cantor sets can have positive measure (“fat Cantor sets”

[18, 23]) or exist on finer sets (in the sense of dimension) than the middle-third

sets. All Cantor sets are, however, uncountable.
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2. Countability is Sufficient.

2.1. The Countable Exceptional Set Theorem. We now give a proof

of Theorem 1. We assume that f is a real-valued function which is continuous on

[a, b], and suppose that Df > 0 on (a, b)\S, where S is countable.

Proof. We first show that f(a) ≤ f(b). Suppose, by way of contradiction, that

f(a) > f(b). Choose γ such that f(a) > γ > f(b), with γ /∈ f(S). This is possible

since f(S) is countable, and therefore does not exhaust (f(b), f(a)). Let

A = {x ∈ [a, b] : f(x) > γ}.

Since a ∈ A, A 6= ∅. Therefore, A has a supremum. Denote it by c. Then

(i) if x > c, f(x) ≤ γ,

(ii) for each δ > 0 there exists xδ such that c− δ < xδ ≤ c and f(xδ) > γ.

Now, suppose f(c) > γ. Then, since f is continuous, f(c+ǫ) > γ for sufficiently

small ǫ > 0, contradicting (i). On the other hand, if f(c) < γ, f(c − ǫ) < γ for

sufficiently small ǫ > 0, which contradicts (ii). Therefore, f(c) = γ. From (i)

and (ii), we have that Df(c) ≤ 0, contradicting the assumption that Df > 0 on

(a, b)\S. Thus, f(b) ≥ f(a).

To complete the proof, let x ∈ (a, b), and apply the results derived above on

[a, x], [x, b], obtaining f(a) ≤ f(x) ≤ f(b). If f(b) = f(a), f is constant on [a, b]

and so Df = 0 on [a, b], contradicting Df > 0. Thus, f(b) > f(a).

Remarks.

• Since the result is true on any [α, β], a ≤ α < β ≤ b, f is strictly increasing

on [a, b].

• The proof also works if we only assume that the Dini derivatives satisfy

D+f > 0, D+f > 0, or D−f > 0. To include the case where D−f > 0( the

upper left Dini derivative), consider c′ = inf{x ∈ [a, b] : f(x), γ}. Observe that

D−f(c′) ≤ 0.

• The proof is a generalization of an argument of Bers [3]. Also see the adjacent

paper of Cohen [7].

• On page 153 of [8] there is a result similar to Theorem 1 in that it allows a

countable set of exceptions, that is, a countable set of points at which Df is not

necessarily positive. Also see the monograph of Boas [4].

We also get the following proposition, which is an exercise in Royden [18], as

a corollary.



VOLUME 17, NUMBER 3, FALL 2005 165

Proposition 1. If f is continuous on [a, b] and one of its derivatives is every-

where non-negative on (a, b), then f is non-decreasing on [a, b].

2.2. The Goldowsky-Tonelli Theorem. We prove the following, which

also gives Goldowsky-Tonelli.

Theorem 3. If f is continuous on [a, b] and if the lower right Dini derivative

D+f is greater than or equal to 0 except on a set of measure 0 and greater than

−∞ except on a countable set, then f is non-decreasing.

Proof. Let µ denote Lebesgue measure, let a1, a2, . . . be the points in [a, b)

where the lower right derivative is −∞, and let An be the measure zero subset of

[a, b) where the derivative is greater than −n. Since An has measure zero, given

any δn > 0, there exists an open set Un that contains An with measure µ(Un) < δn.

We can choose δn to be arbitrarily small. For each x ∈ An we can find an interval

[x, tx) contained in Un such that

f(tx)− f(x) > −(n+ 1)(tx − x) > −(n+ 1)δn.

For each x = an, given any ǫn > 0, we can find an interval [x, tx) with

f(tx)− f(x) > −ǫn.

Again, we can choose ǫn to be arbitrarily small. For every remaining x in [a, b),

since D+f(x) ≥ 0, we can choose any η > 0 and find tx > x such that

f(tx)− f(x) > −η(tx − x).

Therefore, by Zorn’s Lemma [15], we can find a countable family of intervals

[x, tx) such that [a, b) =
⋃
[x, tx). Thus, f(b)− f(a) =

∑
f(tx)− f(x) and b− a =∑

tx − x, since both series telescope. Using these two telescoping series and the

three inequalities above, we get

f(b)− f(a) =
∑

f(tx)− f(x) > −
∑

(n+ 1)δn −
∑

ǫn − η
∑

tx − x

= −
∑

(n+ 1)δn −
∑

ǫn − η(b − a).

By proper choice of δn, ǫn, and η, we can make this as close to 0 as we wish by

showing that f(b) ≥ f(a). Since the same applies to [a, c) for any c ∈ (a, b), this

proves the theorem.
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Corollary 1. If f is continuous on [a, b], has right derivative 0 except on a set

of measure 0, and has finite right Dini derivatives except at countably many points,

then f is constant.

Proof. Apply the above to both f and −f .

Corollary 2. If f is differentiable on an interval [a, b] and has zero derivative

except on a set of measure 0, then f is constant.

3. Between Countable and Measure Zero. The results in the previous

sections naturally lead us to the second question we asked in the introduction.

Namely, if we assume that f is continuous on [a, b] and differentiable on (a, b) a.e.,

then what additional conditions can we impose on Df which guarantees that f is

monotone increasing? Is there any condition between countable and measure zero

that will guarantee monotonicity?

Note that if our exceptional set contains a Cantor set, then we can construct

a continuous non-monotone function g such that Dg > 0 a.e. Simply compose the

homeomorphism from the Cantor set onto the middle-thirds set with the function

f given in Section 1.

Theorem 4. If g is continuous on [a, b] and the exceptional set S of points

where Dg is not positive (or fails to exist) does not contain a perfect set, then g is

non-decreasing. However, for any exceptional set that does contain a perfect set,

there are counterexamples.

Proof. Let g be a continuous function on some interval containing [a, b] with

exceptional set S. Assume that g(a) > g(b). We shall show that S contains a

perfect set. Define the function h on [a, b] by

h(x) = sup{g(t) : x ≤ t ≤ b}.

For any x with Dg(x) > 0, g(x) < h(x), such an x lies in one of the intervals

where h is constant (see Figure 3). Therefore, we have a closed set, which must

be uncountable because h maps it onto [g(b), g(a)]. Since we have an uncountable

closed set, any such set can easily be shown to contain a perfect set, which in turn

contains a Cantor set. (We can alternatively argue as follows. Consider the set

of intervals where h is constant. By constructing a Cantor set of each of these

intervals, we can create the desired set.) Homeomorphically map this set onto the

Cantor middle-thirds set. Composing with the function f of Section 1 gives us the

function we need.
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It would appear that this provides an answer to our second question. However,

there is more for us to show. Recall that the class of Borel sets is the smallest family

containing the intervals that is closed under the operations of countable union and

countable intersection [18, 23].

Theorem 5. The set of points where a continuous function fails to have a

positive derivative is a Borel set.

Proof. The condition that Dg(x) exist and be positive can be stated as follows.

For any integer n > 0 there is an integer m > 0 and there are rational numbers

0 < r < s with (s − r) < 1/n such that for any rational t 6= 0 with |t| < 1/m,

r < (g(x+ t)− g(x))/t < s. Thus, for any positive rational numbers r < s, and any

rational t 6= 0, we let Urst = {x : r < (g(x+ t)− g(x))/t < s}. The set in question

is ⋂
n

⋃
m

⋃
((s−r)<1/n)

⋂
(|t|<1/m)

Urst.

Theorem 6. Any uncountable Borel set contains a perfect set.

Proof. A proof can be found in Section 32 of [10].

Remark. The result is due independently to Alexandroff [1] and Hausdorff [11].

Thus, if the exceptional set is countable, the function is increasing. However,

if it is uncountable, we can construct f such that Df > 0 a.e., but for which

f(a) > f(b). There is no condition between countable and measure zero that

guarantees monotonicity. This in turn shows that Goldowsky-Tonelli is a vacuous

extension of the Countable Exceptional Set Theorem, in that there are not addi-

tional functions to which Goldowsky-Tonelli applies but Countable Exception does

not apply. Goldowsky-Tonelli, however, requires less information. Given a func-

tion satisfying the hypotheses of Goldowsky-Tonelli, one needs Goldowsky-Tonelli

to show that it satisfies the hypotheses of Countable Exception.

4. Must the Derivative Be Strictly Positive? Since we have seen to what

extent positive derivative implies monotonicity, it is natural for us to ask to what

extent monotonicity implies positive derivative. We close with a few results. (The

reader may also be interested in the paper of Katznelson and Stromberg [14].)

Theorem 7. (Riesz) There is a continuous strictly increasing function that

has zero derivative almost everywhere.

This if from Section 24 of Riesz and Nagy [17]. Start with f(0) = 0, f(1) = 1.

Define f(1/2) = (f(0)+2f(1))/3, f(1/4) = (f(0)+2f(1/2))/3, f(3/4) = (f(1/2)+
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2f(1))/3, and so forth, defining f at every dyadic fraction as a weighted sum. The

function extends continuously to [0, 1]. You can picture this as a linear function

which is successively distorted by raising the graph at the midpoints of successively

smaller dyadic intervals. Figure 4 shows the final result. The derivative at any

point, if it exists, is the limit of a product of factors, each of which is either 2/3

or 4/3. But the only number that can be represented as such a limit is 0. Since

Lebesgue’s Theorem says the derivative must exist except on a set of measure 0, it

must therefore be 0 except on a set of measure 0.

Recall that if we require differentiability, the situation is different. We have

shown that if f is differentiable on an interval [a, b] and has zero derivative except

on a set of measure 0, then f is constant. On the other hand, if we just want the

set where the derivative is non-zero to be small, we get a very different result.

Theorem 8. For any ǫ such that 0 < ǫ < (b − a), there is a C∞ function on

[a, b] that is strictly increasing, but has zero derivative except on a set of measure

at most ǫ.

Proof. Choose a sequence {an} of positive numbers summing to ǫ, where

0 < ǫ < (b − a). Now perform a “middle-third” construction, removing an open

interval of length a1 from the interior of [a, b], then an interval from the interior

of each of the two remaining intervals with lengths adding up to a2, then intervals

from the four remaining ones with lengths adding up to a3, etc., being sure to

choose the intervals we remove so that the remaining intervals have lengths that

approach 0 (e.g., choose each interval to be removed so that the two remaining

intervals have equal length). Now define a function f which is 0 on the remaining

set, which clearly has measure 1− ǫ, and which satisfies

f(x) = exp(−1/(x− c)2 − 1/(x− d)2)

on each removed interval (c, d). This function is C∞. Because the lengths of the

intervals “left behind” approach 0, f is not identically 0 on any interval within

[a, b]. An indefinite integral of f is the function we seek.

We close by noting that if we assume simple differentiability, then we have a

(somewhat complicated) variation of the previous example with zero derivative on

a dense subset of measure at least 1− ǫ.
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Figure 1. The function g1/2(x)



170 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Figure 2. Magnification of a part of the graph of g1/2

Figure 3. (A.) For Theorem 4 — The function g
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Figure 3. (B.) For Theorem 4 — The function h

Figure 4. Function described in Riesz-Nagy
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