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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

149. [2004, 129] Proposed by Joe Howard, Portales, New Mexico and Les Reid,
Southwest Missouri State University, Springfield, Missouri.

Let A, B, C be the angles of a triangle. Show

3 + cosA+ cosB + cosC ≥ 2(sinA sinB + sinB sinC + sinC sinA)

≥ 9(cosA+ cosB + cosC − 1)

with equality if and only if the triangle is equilateral.

Solution by the proposers. Let r, R, and s denote the inradius, circumradius,
and semiperimeter, respectively. Euler’s inequality (R ≥ 2r) is well known. The
following can be found in Crux Mathematicorum, [2029] 22 (3) (1996), p. 130 and
on pages 45 and 55–56 of D. S. Mitrinović, J. E. Pec̆urić, and V. Volenec, Recent
Advances in Geometric Inequalities, Kluwer Academic Pub., 1989.

sinA sinB + sinB sinC + sinC sinA =
s2 + 4Rr + r2

4R2
(1)

cosA+ cosB + cosC = 1 +
r

R
(2)

4R2 + 4Rr + 3r2 ≥ s2 ≥ 16Rr − 5r2 (3)

Using (1) and (2), the given inequality is equivalent to

4 +
r

R
≥ 2

(

s2 + 4Rr + r2

4R2

)

≥ 9

(

r

R

)

which is equivalent to

8R2 − 2Rr − r2 ≥ s2 ≥ 14Rr − r2.
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For the first inequality: from Euler’s inequality (R ≥ 2r); R2 ≥ 4r2 and
3R2 ≥ 6Rr which implies 4R2 ≥ 6Rr + 4r2. By this and (3),

8R2 − 2Rr − r2 ≥ 4R2 + 4Rr + 3r2 ≥ s2.

For the second inequality: from Euler’s inequality (R ≥ 2r); 2Rr ≥ 4r2 and
with (3) implies

s2 ≥ 16Rr − 5r2 ≥ 14Rr − r2.

The equality is clear when the triangle is equilateral. Conversely, if 8R2 −
2Rr − r2 = s2, then the first part of (3) yields

4R2 + 4Rr + 3r2 ≥ 8R2 − 2Rr − r2

or
0 ≥ 4R2 − 6Rr − 4r2 = 2(R− 2r)(2R+ r).

This implies that 2r ≥ R, which along with Euler’s inequality forces 2r = R, hence
the triangle must be equilateral. A similar argument works for the other inequality.

Also solved by Scott H. Brown, Auburn University, Montgomery, Alabama and
Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan.

150. [2004, 130] Proposed by Ovidui Furdui, Western Michigan University,
Kalamazoo, Michigan.

Evaluate

∫∫

D

{

1

x+ y

}

dx dy,

where D = [0, 1]× [0, 1] and {a} is the fractional part of a.

Solution by Huizeng Qin, Shandong University of Technology, Zibo, People’s
Republic of China. Let

x =
1

2
(u − v), y =

1

2
(u+ v). (1)

Then,

∫∫

D

{

1

x+ y

}

dx dy =
1

2

(
∫∫

D1

+

∫∫

D2

){

1

u

}

du dv = I1 + I2, (2)
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where

D1 = {−u ≤ v ≤ u, 0 ≤ u ≤ 1} and D2 = {u− 2 ≤ v ≤ 2− u, 1 ≤ u ≤ 2}.

Now, we evaluate I1 and I2, separately. Since {1/u} = 1/u when u > 1, we first
have

I2 =
1

2

∫∫

D2

1

u
du dv =

1

2

∫ 2

1

∫ 2−u

u−2

1

u
dv du =

∫ 2

1

2− u

u
du = 2 ln 2− 1. (3)

To evaluate I1, we rewrite {a} as a− ⌊a⌋, where ⌊a⌋ is the integer part of a. Now,
we can use the well known result

∞
∑

n=1

1

n2
=

π2

6
(4)

to obtain

I1 =
1

2

∫ 1

0

∫ u

−u

(

1

u
−
⌊

1

u

⌋)

dv du = 1−
∫ 1

0

u

⌊

1

u

⌋

du (5)

= 1−
∫

∞

1

⌊v⌋
v3

dv =
∞
∑

n=1

∫ n+1

n

n

v3
dv

= 1− 1

2

∞
∑

n=1

n

(

1

n2
− 1

(n+ 1)2

)

= 1− 1

2

∞
∑

n=1

(

1

n
− 1

n+ 1
+

1

(n+ 1)2

)

=
1

2
− 1

2

∞
∑

n=1

1

(n+ 1)2

=
1

2
− 1

2

(

π2

6
− 1

)

= 1− π2

12
.
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Combining (2), (3), and (5), we get

∫∫

D

{

1

x+ y

}

dx dy = 2 ln 2− π2

12
.

Also solved by the proposer.

151. [2004, 130] Proposed by José Luis Diaz-Barrero, Universidad Politécnica
de Cataluña, Barcelona, Spain.

Solve the differential equation

√

1 + y2x2earctanxdx+
√

1 + x2dy = 0.

Solution by the proposer. Dividing both sides of the given equation by
√

(1 + x2)(1 + y2) and rearranging terms yields

− dy
√

1 + y2
=

x2earctanx

√
1 + x2

dx. (1)

Integrating both sides of (1), we get

− ln(y +
√

1 + y2) = − sinh−1(y) = F (x),

where

F (x) =

∫

x2earctanx

√
1 + x2

dx.

To obtain F (x), we call

I1 =

∫

earctanx

√
1 + x2

dx
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and

I2 =

∫

xearctan x

√
1 + x2

dx.

Then,

I1 =

∫

earctanx

√
1 + x2

dx =

∫

√
1 + x2earctan x

1 + x2
dx

=

∫

√

1 + x2d(earctan x) =
√

1 + x2earctan x − I2

and so,

I1 + I2 =
√

1 + x2earctanx. (2)

On the other hand,

I2 =

∫

xearctanx

√
1 + x2

dx =

∫

x
√
1 + x2earctanx

1 + x2
dx

=

∫

x
√

1 + x2d(earctan x)

= x
√

1 + x2earctanx − I1 − 2

∫

x2earctanx

√
1 + x2

dx.

That is,

F (x) =
x
√
1 + x2earctan x − (I1 + I2)

2
.

Taking into account (2), we obtain

F (x) =
1

2
(x− 1)earctanx

√

1 + x2.
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Therefore,

sinh−1(y) =
1

2
(1− x)earctan x

√

1 + x2 + C

or

y = sinh

(

(1− x)earctan x
√
1 + x2

2
+ C

)

, C ∈ R

and we are done.

Also solved by Ovidiu Furdui, Western Michigan University, Kalamazoo,
Michigan and Kenneth Davenport, Dallas, Pennsylvania.

152. [2004, 130] Proposed by Joe Flowers and Doug Martin (student), Texas
Lutheran University, Seguin, Texas.

Let

F (s) = L[f(t)] =

∫

∞

0

e−stf(t) dt

denote the Laplace transform of f(t). Find L[sinn bt], where b is any real constant
and n is any non-negative integer.

Solution by the proposers. Let

Fn(s) = L[sinn bt].

The results

F0(s) =
1

s
and F1(s) =

b

s2 + b2

are well-known. For n > 1, let

f(t) = sinn bt.

Then,
f ′(t) = nb · cos bt · sinn−1 bt
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and

f ′′(t) = nb2
(

(n− 1) sinn−2 bt− n · sinn bt
)

and therefore,

L[f ′′(t)] = b2
(

n(n− 1)Fn−2(s)− n2Fn(s)

)

.

Also, from the theory of Laplace transforms,

L[f ′′(t)] = s2Fn(s)− s · f(0)− f ′(0) = s2Fn(s).

From these we obtain the second degree recurrence formula

Fn(s) =
b2 · n(n− 1)

s2 + n2b2
· Fn−2(s)

and then by iteration,

Fn(s) =
bn · n!

s ·∏n/2
k=1(s

2 + 4k2b2)

for even values of n and

Fn(s) =
bn · n!

∏(n−1)/2
k=0 (s2 + (2k + 1)2b2)

for odd values of n.

Also solved by Thomas Dence, Ashland University, Ashland, Ohio and Ovidiu
Furdui, Western Michigan University, Kalamazoo, Michigan. A partial solution
was also received.


