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EVALUATION OF A CLASS OF MULTIPLE INTEGRALS

Mohamed Akkouchi

Abstract. In his paper [1], K. L. D. Gunawardena introduced two sequences
of multiple integrals (see (1.1) and (1.2) below) encountered in one of his courses
of mathematical statistics. Using a key probability result, he evaluated these in-
tegrals. At the end of [1], he asked the question whether these integrals could be
computed without using results from probability theory. The aim of this paper is to
answer that question and make direct computations of these integrals by elementary
methods without using probabilistic tools.

1. Introduction. In his paper [1], K. L. D. Gunawardena has considered the
following sequences of multiple integrals

In :=

∫ 1

0

· · ·

∫ 1

0

θn(x1 · · ·xn)
θ−1

ln(x1 · · ·xn)
dx1 · · · dxn (1.1)

and

Jn :=

∫

∞

0

· · ·

∫

∞

0

θn[(1 + x1) · · · (1 + xn)]
−(θ+1)

ln[(1 + x1) · · · (1 + xn)]
dx1 · · · dxn (1.2)

where θ > 0 and n is an integer greater than or equal to 2. He computed separately,
(1.1) and (1.2), by using a key probability result and asked whether (1.1) and (1.2)
could be computed without making use of results from probability theory.

The purpose of this note is to make direct computations of (1.1) and (1.2)
by using tools only from classical analysis. More precisely, we compute (1.1) and
(1.2) by using some convenient and natural changes of variables. Before starting
computations, we need to introduce the following sequence of multiple integrals:

Kn :=

∫

∞

0

· · ·

∫

∞

0

θn exp (−θ(y1 + · · ·+ yn))

y1 + · · ·+ yn
dy1 · · · dyn, (1.3)

for all integers n greater than or equal to 2. The introduction of these integrals is
justified by the following observation.
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Observation. For all integers n greater than or equal to 2, we have the following
equalities:

−In = Jn = Kn. (1.4)

To prove the first equality in (1.4), it is sufficient to use the following change
of variable:

yi :=
1

1 + xi

, for all i = 1, 2, ..., n. (1.5)

To prove the second equality in (1.4), it is sufficient to use the following change of
variable:

yi := ln(1 + xi), for all i = 1, 2, ..., n. (1.6)

By this observation, we are led to compute only the integrals Kn for n ≥ 2. It
is clear that K1 is infinite. To compute Kn, we shall use the spherical coordinates
in the Euclidean space R

n.

2. Recalls on Spherical Coordinates. In the Euclidean space R
n, the

spherical coordinates (r, φ1, . . . , φn−1) correponding to the point (x1, . . . , xn) are
given by

x1 = r sinφn−1 · · · sinφ3 sinφ2 sinφ1

x2 = r sinφn−1 · · · sinφ3 sinφ2 cosφ1

x3 = r sinφn−1 · · · sinφ3 cosφ2 (2.1)

· · · = · · · · · · · · · · · ·

xn−1 = r sinφn−1 cosφn−2

xn = r cosφn−1,

where 0 ≤ r < ∞; 0 ≤ φ1 < 2π; and 0 ≤ φk < π for all k = 2, . . . n− 1. Conversely,
for all k = 1, 2, . . . , n− 1, by setting r2

k
:= x2

1 + · · ·+ x2
k
and rn := r, we have

cos(φk) =
xk+1

rk+1
, (2.2)

and
sin(φk) =

rk

rk+1
. (2.3)
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We recall that the Jacobian of this change of variables is given by

rn−1 sinn−2 φn−1 sin
n−3 φn−2 · · · sinφ2. (2.4)

Let Sn be the unit sphere (i.e., the set of x = (x1, ..., xn) with ‖x‖ = 1, where
‖.‖ is the usual Euclidean norm of Rn). Then (2.4) means that for any Lebesgue
integrable function f on R

n, we have

∫

Rn

f(x) dx =

∫

∞

0

[
∫

Sn

f(ru) dσ(u)

]

rn−1 dr, (2.5)

where x = ru ∈ R
n = [0,∞)× Sn and

dσ(u) = sinn−2 φn−1 sin
n−3 φn−2 · · · sinφ2 dφ1 · · · dφn−2 dφn−1 (2.6)

is the restriction of the Lebesgue measure on Sn.

Let us consider the set R
n
+ := {x = (x1, . . . , xn) ∈ R

n : 0 ≤ xi ≤ ∞, for all i =
1, . . . , n}, and denote

S
n

+ := {u = (1, φ1, · · · , φn−1) ∈ Sn : 0 ≤ φi ≤
π

2
, for all i = 1, . . . , n− 1}.

Then, it is clear that for all x = ru ∈ R
n, we have

x ∈ R
n

+ ⇐⇒ u ∈ S
n

+, (2.7)

and for every Lebesgue integrable function f on R
n
+, we have

∫

Rn

+

f(x) dx =

∫

∞

0

[

∫

Sn
+

f(ru) dσ(u)

]

rn−1 dr. (2.8)

3. Computation of Kn, In, and Jn. First, we start by setting yi := xi
2

where 0 ≤ xi < ∞ for all i = 1, 2, . . . , n. With these variables, we have

dy1 · · · dyn = 2nx1 · · ·xndx1 · · · dxn, (3.1)
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and then

Kn = 2nθn
∫

∞

0

· · ·

∫

∞

0

exp (−θ(x1
2 + · · ·+ xn

2))

x1
2 + · · ·+ xn

2
x1 · · ·xndx1 · · · dxn. (3.2)

Now, we use the spherical coordinates, and set as in (2.1)

x1 = r sinφn−1 · · · sinφ3 sinφ2 sinφ1

x2 = r sinφn−1 · · · sinφ3 sinφ2 cosφ1

x3 = r sinφn−1 · · · sinφ3 cosφ2 (3.3)

· · · = · · · · · · · · · · · ·

xn−1 = r sinφn−1 cosφn−2

xn = r cosφn−1,

where 0 ≤ r < ∞ and 0 ≤ φi ≤
π

2 , for all i = 1, . . . , n− 1. Then, from (3.2), (3.3),
and Fubini’s Theorem, we get

Kn = 2nθn
[
∫

∞

0

r2n−3 exp (−θr2) dr

] n−1
∏

i=1

[

∫ π

2

0

sin2i−1(φi) cos(φi) dφi

]

. (3.4)

The first integral in (3.4) is easily computed by setting t := θr2. Indeed, with this
change of variable, we have:

∫

∞

0

r2n−3 exp (−θr2) dr =
1

2θn−1

∫

∞

0

tn−2 exp (−t) dt =
Γ(n− 1)

2θn−1
=

(n− 2)!

2θn−1
.

(3.5)
The product in (3.4) is easy to obtain. Indeed, we have

n−1
∏

i=1

[

∫ π

2

0

sin2i−1(φi) cos(φi) dφi

]

=

n−1
∏

i=1

1

2i
=

1

2n−1(n− 1)!
. (3.6)

From (3.4), (3.5), and (3.6), we conclude that

Kn =
θ

n− 1
. (3.7)
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We deduce that

In = −
θ

n− 1
, (3.8)

and

Jn =
θ

n− 1
. (3.9)

So we recapture (in (3.8) and (3.9)) the results already obtained by K. L. D. Gu-
nawardena in [1] by using probabilistic tools.
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