REPRESENTING INTEGERS IN THE BINARY NUMBER SYSTEM AS PERMANENTS OF CERTAIN MATRICES

Seol Han-Guk

Abstract. The permanent of an *m*-by-*n* matrix *A* is the sum of all possible products of *m* elements from *A* with the property that the elements in each of the products lie on different lines of *A*. This scalar valued function of the matrix *A* occurs throughout the combinatorial literature in connection with various enumeration and extremal problems. In this note, we construct a (0, 1)-matrix with a prescribed permanent, $1, 2, \ldots, 2^{n-1}$.

1. Introduction. Let $A = [a_{ij}]$ be an *m*-by-*n* matrix. The *permanent* of A is defined by

$$\operatorname{per}(A) = \sum a_{1i_1} a_{2i_2} \cdots a_{mi_m},$$

where the summation extends over all the *m*-permutations (i_1, i_2, \ldots, i_m) of the integers 1, 2, ..., *n*. Thus, per(*A*) is the sum of all possible products of *m* elements of the *m*-by-*n* matrix *A* with the property that the elements in the product comes from different columns of *A*. This scalar valued function of the matrix *A* occurs throughout the combinatorial literature in connection with various enumeration and extremal problems. In [1], it was shown that the existence of the (0, 1)-matrix of order *n* whose permanent is k ($0 \le k \le 2^{n-1}$). In this note, we construct a (0, 1)-matrix whose permanent is k ($0 \le k \le 2^{n-1}$) by the binary number system of *k*. Its related matrices are also considered.

2. Construction of (0, 1)-Matrix with Permanent k. For the purpose of our construction, we define the following matrix.

<u>Definition 1</u>. Let B_n be the following *n*-by-*n* (0, 1)-matrix.

	Γ1	1	1	1	•	•	•	1	1	1	1	17	
$B_n = [b_{ij}] =$	1	1	0	0	•	•	•	0	0	0	0	0	
	1	1	1	0	•	•	•	0	0	0	0	0	
	1	1	1	1	•	•	•	0	0	0	0	0	
	.	•	•	•	•	•	•	•	•	•	•	•	.
	.	•	·	•	•	•	•	•	•	•	•	•	
	.	•	·	•	•	•	•	•	•	•	•	•	
	.	•	•	•	•	•	•	•	•	•	•	•	
	1	1	1	1	•	•	•	1	1	1	1	0	
	$\lfloor 1$	1	1	1	•	•	•	1	1	1	1	1	

We say B_n is the *basic matrix* of order n.

Let $A = [a_{ij}]$ be an *m*-by-*n* real matrix with row vectors $\alpha_1, \alpha_2, \ldots, \alpha_m$. We say *A* is *contractible* on column (row) *k* if column (row) *k* contains exactly two nonzero entries. Suppose *A* is contractible on column *k* with $a_{ik} \neq 0 \neq a_{jk}$ and $i \neq j$. Then the (m-1)-by-(n-1) matrix $A_{ij:k}$ obtained from *A* by replacing row *i* with $a_{jk}\alpha_i + a_{ik}\alpha_j$ and deleting row *j* and column *k* is called the *contraction* of *A* on column *k* relative to rows *i* and *j*. If *A* is contractible on row *k* with $a_{ki} \neq 0$ and $a_{kj} \neq 0$ for some $i \neq j$, then the matrix $A_{k:ij} = [A_{ij:k}^T]^T$ is called the contraction of *A* on row *k* relative to columns *i* and *j*. Now we can evaluate the permanent of B_n .

<u>Lemma 1</u>. per $B_n = 2^{n-1}$.

<u>Proof.</u> By the contraction of B_n on column *n* relative to rows 1 and *n*, per $B_n = 2 \text{per}B_{n-1}$. Since $\text{per}B_2 = 2$, it follows by induction that $\text{per}B_n = 2^{n-1}$. The proof is complete.

In addition, we may define a related matrix using B_n .

<u>Definition 2</u>. $B_n(n,k) = B_n - E_{n,k}$, where $E_{n,k}$ is a cell which is a (0, 1)-matrix with only one entry equal to 1, the (n, k) entry.

<u>Definition 3.</u> $B_n(n|k)$ is the submatrix of B_n whose *n*th row and *k*th column are deleted.

<u>Proposition</u>. per $B_n(n,k) = 2^{n-1} - 2^{k-2}$, (k = 2, 3, ..., n) and per $B_n(n,1) = 2^{n-1} - 1$.

<u>Proof.</u> It easily follows that $\operatorname{per}B_n(n|k) = 2^{k-2}$, $k = 2, 3, \ldots, n$, and $\operatorname{per}B_n(n|1) = 1$. Since $\operatorname{per}B_n(n,k) = \operatorname{per}B_n - \operatorname{per}B_n(n|k)$, $\operatorname{per}B_n(n,k) = 2^{n-1} - 2^{k-2}$, $k = 2, 3, \ldots, n$ and $\operatorname{per}B_n(n, 1) = 2^{n-1} - 1$. The proof is complete.

Now we define the process of the construction of a (0, 1)-matrix by the binary number system (base 2), and give the main result.

<u>Definition 4</u>. Let t be a positive integer with $2^{n-2} \leq t \leq 2^{n-1}$ and $t_{(2)} = x_{n-2}x_{n-3}\cdots x_1x_0$ be the binary representation of t, where the x_i 's are 0 or 1. Define $x_k^c = 1$ if $x_k = 0$, and 0, otherwise.

<u>Theorem</u>. Let t be a positive integer with $2^{n-2} < t \leq 2^{n-1}$ and $t_{(2)} = x_{n-2}x_{n-3}\cdots x_1x_0$ be the binary representation of t. Let $B_n(t)$ be obtained from B_n by replacing $b_{n,k}$ to x_{k-1}^c , for all $k = 1, 2, \ldots, n-1$. Then per $B_n(t) = 2^{n-1} - t$.

<u>Proof.</u> Let $t_{(2)} = x_{n-2}x_{n-3}\cdots x_1x_0$. Then $t = x_{n-2}2^{n-2} + x_{n-3}2^{n-3} + \cdots + x_1 + x_0$. By the expansion of the *n*th row of $B_n(t)$,

$$per(B_n(t)) = \sum_{k=1}^{n} b_{nk} perB(n|k)$$

= $perB(n|1) + \sum_{k=2}^{n} x_{k-2}^c perB(n|k) + perB(n|n)$
= $1 + \sum_{k=2}^{n} x_{k-2}^c 2^{k-2} + 2^{n-2}$
= $2^{n-1} - \sum_{k=2}^{n} x_{k-2} 2^{k-2}$
= $2^{n-1} - t$.

The proof is complete.

Example. Let k = 389. Then

with permanent $512 = 2^9$. Take t = 123. Then $(123)_{(2)} = 01111011$. Then

and $perB_{10}(123) = 512 - 123 = 389$.

<u>Conclusion</u>. For any positive integer k, we can find a (0,1)-matrix with permanent $k, (1, 2, \ldots, 2^{n-1})$.

3. Some Results for Related B_n . Now we may consider the permanent of matrices by replacing 0 entries in B_n by 1. The following theorem contains properties of permanents for matrices which are related to B_n . Recall that matrix $E_{i,j}$ is a cell with appropriate size.

<u>Theorem</u>.

- (1) $\operatorname{per}(B_n + E_{2,k}) = 2^{n-k} \operatorname{per}(B_k + E_{2,k}), \ (k = 3, 4, \dots, n-1).$
- (2) $\operatorname{per}(B_n + E_{2,n}) = 2\operatorname{per}B_{n-1} + \operatorname{per}(B_{n-1} + E_{2,3} + E_{3,4} + \dots + E_{n-2,n-1}).$

- (3) $\operatorname{per}(B_n + E_{2,3} + E_{3,4} + \dots + E_{n-1,n}) = 2 \times 3^{n-2}.$
- (4) $\operatorname{per}(B_n + E_{3,k}) = 2^{n-k+1} \operatorname{per}(B_{k-1} + E_{2,k-1}), \ (k = 4, 5, \dots, n-1).$
- (5) $\operatorname{per}(B_n + E_{k,n}) = 2^{k-2} \operatorname{per}(B_{n-k+2} + E_{2,n-k+2}), \ (k = 3, 4, \dots, n-1).$

<u>Proof</u>.

- (1) By contraction of $B_n + E_{2,k}$ on column *n* relative to rows of 1 and *n*, we obtain per $(B_n + E_{2,k}) = 2 \text{per}(B_{n-1} + E_{2,k})$, where the order of $E_{2,k}$ is n-1. Now we apply this process to $B_{n-1} + E_{2,k}$ of order n-1. Then $\text{per}(B_n + E_{2,k}) = 2^{n-k} \text{per}(B_k + E_{2,k}), \ (k = 3, 4, \dots, n-1).$
- (2) Expanding the second row of $(B_n + E_{2,n})$, we obtain $\operatorname{per}(B_n + E_{2,n}) = 2\operatorname{per}B_{n-1} + \operatorname{per}(B_{n-1} + E_{2,3} + E_{3,4} + \dots + E_{n-2,n-1}).$
- (3) Expand the second row of $\operatorname{per}(B_n + E_{2,3} + E_{3,4} + \dots + E_{n-1,n}) = \operatorname{3per}(B_{n-1} + E_{2,3} + E_{3,4} + \dots + E_{n-2,n-1})$. Continuing this process, we obtain the matrix J_3 with permanent equal to 3!.
- (4) Contracting $B_n + E_{3,k}$ on row 2 relative to columns 1 and 2, we have that $\operatorname{per}(B_n + E_{3,k}) = 2\operatorname{per}(B_{n-1} + E_{2,k-1})$. Now applying formula (1) to the matrix $B_{n-1} + E_{2,k-1}$, we have that $\operatorname{per}(B_{n-1} + E_{2,k-1}) = 2^{n-k-2}\operatorname{per}(B_{k-1} + E_{2,k-1})$.
- (5) Contracting $B_n + E_{k,n}$ on row 2 relative to columns 1 and 2, we have that $per(B_n + E_{k,n}) = 2per(B_{n-1} + E_{k-1,n-1})$. Continuing this process, we obtain the matrix $B_{n-k+2} + E_{2,n-k+2}$. This leads us to the conclusion.

The proof is complete.

Mathematics Subject Classification (2000): 15A15

Reference

 R. A. Brualdi and H. A. Ryser, *Combinatorial Matrix Theory*, Cambridge University Press, 1991.

Seol Han-Guk Department of Mathematics Daejin University Pocheon 487-711 Korea email: hgseol@skku.edu