REPRESENTING INTEGERS IN THE BINARY NUMBER SYSTEM AS PERMANENTS OF CERTAIN MATRICES

Seol Han-Guk

Abstract

The permanent of an m-by- n matrix A is the sum of all possible products of m elements from A with the property that the elements in each of the products lie on different lines of A. This scalar valued function of the matrix A occurs throughout the combinatorial literature in connection with various enumeration and extremal problems. In this note, we construct a $(0,1)$-matrix with a prescribed permanent, $1,2, \ldots, 2^{n-1}$.

1. Introduction. Let $A=\left[a_{i j}\right]$ be an m-by- n matrix. The permanent of A is defined by

$$
\operatorname{per}(A)=\sum a_{1 i_{1}} a_{2 i_{2}} \cdots a_{m i_{m}}
$$

where the summation extends over all the m-permutations $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ of the integers $1,2, \ldots, n$. Thus, $\operatorname{per}(A)$ is the sum of all possible products of m elements of the m-by- n matrix A with the property that the elements in the product comes from different columns of A. This scalar valued function of the matrix A occurs throughout the combinatorial literature in connection with various enumeration and extremal problems. In [1], it was shown that the existence of the $(0,1)$-matrix of order n whose permanent is $k\left(0 \leq k \leq 2^{n-1}\right)$. In this note, we construct a $(0,1)$-matrix whose permanent is $k\left(0 \leq k \leq 2^{n-1}\right)$ by the binary number system of k. Its related matrices are also considered.
2. Construction of $(\mathbf{0}, \mathbf{1})$-Matrix with Permanent k. For the purpose of our construction, we define the following matrix.

Definition 1. Let B_{n} be the following n-by- $n(0,1)$-matrix.

$$
B_{n}=\left[b_{i j}\right]=\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & . & . & . & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & . & . & . & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & . & . & . & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & . & . & . & 0 & 0 & 0 & 0 & 0 \\
. & . & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . & . & . & . & . \\
1 & 1 & 1 & 1 & . & . & . & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & . & . & . & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

We say B_{n} is the basic matrix of order n.
Let $A=\left[a_{i j}\right]$ be an m-by- n real matrix with row vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$. We say A is contractible on column (row) k if column (row) k contains exactly two nonzero entries. Suppose A is contractible on column k with $a_{i k} \neq 0 \neq a_{j k}$ and $i \neq j$. Then the $(m-1)$-by- $(n-1)$ matrix $A_{i j: k}$ obtained from A by replacing row i with $a_{j k} \alpha_{i}+a_{i k} \alpha_{j}$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{k i} \neq 0$ and $a_{k j} \neq 0$ for some $i \neq j$, then the matrix $A_{k: i j}=\left[A_{i j: k}^{T}\right]^{T}$ is called the contraction of A on row k relative to columns i and j. Now we can evaluate the permanent of B_{n}.

Lemma 1. $\operatorname{per} B_{n}=2^{n-1}$.
Proof. By the contraction of B_{n} on column n relative to rows 1 and $n, \operatorname{per} B_{n}=$ $2 \operatorname{per} B_{n-1}$. Since per $B_{2}=2$, it follows by induction that per $B_{n}=2^{n-1}$. The proof is complete.

In addition, we may define a related matrix using B_{n}.
Definition 2. $B_{n}(n, k)=B_{n}-E_{n, k}$, where $E_{n, k}$ is a cell which is a $(0,1)$-matrix with only one entry equal to 1 , the (n, k) entry.

Definition 3. $B_{n}(n \mid k)$ is the submatrix of B_{n} whose nth row and k th column are deleted.

Proposition. $\operatorname{per} B_{n}(n, k)=2^{n-1}-2^{k-2},(k=2,3, \ldots, n)$ and $\operatorname{per} B_{n}(n, 1)=$ $2^{n-1}-1$.

Proof. It easily follows that $\operatorname{per} B_{n}(n \mid k)=2^{k-2}, k=2,3, \ldots, n$, and $\operatorname{per} B_{n}(n \mid 1)=1$. Since $\operatorname{per} B_{n}(n, k)=\operatorname{per} B_{n}-\operatorname{per} B_{n}(n \mid k), \operatorname{per} B_{n}(n, k)=$ $2^{n-1}-2^{k-2}, k=2,3, \ldots, n$ and $\operatorname{per} B_{n}(n, 1)=2^{n-1}-1$. The proof is complete.

Now we define the process of the construction of a $(0,1)$-matrix by the binary number system (base 2), and give the main result.

Definition 4. Let t be a positive integer with $2^{n-2} \leq t \leq 2^{n-1}$ and $t_{(2)}=$ $x_{n-2} x_{n-3} \cdots x_{1} x_{0}$ be the binary representation of t, where the x_{i} 's are 0 or 1 . Define $x_{k}^{c}=1$ if $x_{k}=0$, and 0 , otherwise.

Theorem. Let t be a positive integer with $2^{n-2}<t \leq 2^{n-1}$ and $t_{(2)}=$ $x_{n-2} x_{n-3} \cdots x_{1} x_{0}$ be the binary representation of t. Let $B_{n}(t)$ be obtained from B_{n} by replacing $b_{n, k}$ to x_{k-1}^{c}, for all $k=1,2, \ldots, n-1$. Then $\operatorname{per} B_{n}(t)=2^{n-1}-t$.

Proof. Let $t_{(2)}=x_{n-2} x_{n-3} \cdots x_{1} x_{0}$. Then $t=x_{n-2} 2^{n-2}+x_{n-3} 2^{n-3}+\cdots+$ $x_{1}+x_{0}$. By the expansion of the nth row of $B_{n}(t)$,

$$
\begin{aligned}
\operatorname{per}\left(B_{n}(t)\right) & =\sum_{k=1}^{n} b_{n k} \operatorname{per} B(n \mid k) \\
& =\operatorname{per} B(n \mid 1)+\sum_{k=2}^{n} x_{k-2}^{c} \operatorname{per} B(n \mid k)+\operatorname{per} B(n \mid n) \\
& =1+\sum_{k=2}^{n} x_{k-2}^{c} 2^{k-2}+2^{n-2} \\
& =2^{n-1}-\sum_{k=2}^{n} x_{k-2} 2^{k-2} \\
& =2^{n-1}-t .
\end{aligned}
$$

The proof is complete.
$\underline{\text { Example. Let } k=389 \text {. Then }}$

$$
B_{10}=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

with permanent $512=2^{9}$. Take $t=123$. Then $(123)_{(2)}=01111011$. Then

$$
B_{10}(123)=\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

and $\operatorname{per} B_{10}(123)=512-123=389$.
Conclusion. For any positive integer k, we can find a $(0,1)$-matrix with permanent $k,\left(1,2, \ldots, 2^{n-1}\right)$.
3. Some Results for Related $\mathbf{B}_{\mathbf{n}}$. Now we may consider the permanent of matrices by replacing 0 entries in B_{n} by 1 . The following theorem contains properties of permanents for matrices which are related to B_{n}. Recall that matrix $E_{i, j}$ is a cell with appropriate size.

Theorem.
(1) $\operatorname{per}\left(B_{n}+E_{2, k}\right)=2^{n-k} \operatorname{per}\left(B_{k}+E_{2, k}\right),(k=3,4, \ldots, n-1)$.
(2) $\operatorname{per}\left(B_{n}+E_{2, n}\right)=2 \operatorname{per} B_{n-1}+\operatorname{per}\left(B_{n-1}+E_{2,3}+E_{3,4}+\cdots+E_{n-2, n-1}\right)$.
(3) $\operatorname{per}\left(B_{n}+E_{2,3}+E_{3,4}+\cdots+E_{n-1, n}\right)=2 \times 3^{n-2}$.
(4) $\operatorname{per}\left(B_{n}+E_{3, k}\right)=2^{n-k+1} \operatorname{per}\left(B_{k-1}+E_{2, k-1}\right),(k=4,5, \ldots, n-1)$.
(5) $\operatorname{per}\left(B_{n}+E_{k, n}\right)=2^{k-2} \operatorname{per}\left(B_{n-k+2}+E_{2, n-k+2}\right),(k=3,4, \ldots, n-1)$.

Proof.
(1) By contraction of $B_{n}+E_{2, k}$ on column n relative to rows of 1 and n, we obtain $\operatorname{per}\left(B_{n}+E_{2, k}\right)=2 \operatorname{per}\left(B_{n-1}+E_{2, k}\right)$, where the order of $E_{2, k}$ is $n-1$. Now we apply this process to $B_{n-1}+E_{2, k}$ of order $n-1$. Then $\operatorname{per}\left(B_{n}+E_{2, k}\right)=$ $2^{n-k} \operatorname{per}\left(B_{k}+E_{2, k}\right),(k=3,4, \ldots, n-1)$.
(2) Expanding the second row of $\left(B_{n}+E_{2, n}\right)$, we obtain $\operatorname{per}\left(B_{n}+E_{2, n}\right)=$ $2 \operatorname{per} B_{n-1}+\operatorname{per}\left(B_{n-1}+E_{2,3}+E_{3,4}+\cdots+E_{n-2, n-1}\right)$.
(3) Expand the second row of $\operatorname{per}\left(B_{n}+E_{2,3}+E_{3,4}+\cdots+E_{n-1, n}\right)=3 \operatorname{per}\left(B_{n-1}+\right.$ $\left.E_{2,3}+E_{3,4}+\cdots+E_{n-2, n-1}\right)$. Continuing this process, we obtain the matrix J_{3} with permanent equal to 3 !.
(4) Contracting $B_{n}+E_{3, k}$ on row 2 relative to columns 1 and 2, we have that $\operatorname{per}\left(B_{n}+E_{3, k}\right)=2 \operatorname{per}\left(B_{n-1}+E_{2, k-1}\right)$. Now applying formula (1) to the matrix $B_{n-1}+E_{2, k-1}$, we have that $\operatorname{per}\left(B_{n-1}+E_{2, k-1}\right)=2^{n-k-2} \operatorname{per}\left(B_{k-1}+E_{2, k-1}\right)$.
(5) Contracting $B_{n}+E_{k, n}$ on row 2 relative to columns 1 and 2, we have that $\operatorname{per}\left(B_{n}+E_{k, n}\right)=2 \operatorname{per}\left(B_{n-1}+E_{k-1, n-1}\right)$. Continuing this process, we obtain the matrix $B_{n-k+2}+E_{2, n-k+2}$. This leads us to the conclusion.
The proof is complete.

Mathematics Subject Classification (2000): 15A15

$\underline{\text { Reference }}$

1. R. A. Brualdi and H. A. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.

Seol Han-Guk
Department of Mathematics
Daejin University
Pocheon 487-711
Korea
email: hgseol@skku.edu

