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RETURNS TO THE ORIGIN FOR RANDOM WALKS

ON Z REVISITED

Helmut Prodinger

Chrysafi and Bradley [1] considered symmetric random walks, defined as fol-
lows: let Xk, k = 1, 2, . . . be independent and identically distributed random vari-
ables with P{Xk = 1} = P{Xk = −1} = 1

2
. Then

Sm =

m
∑

k=1

Xk with S0 = 0

is a simple random walk starting at 0. The authors considered only walks of even
length m = 2n and were interested in the random variable R = Rn, defined to be
the number of returns to the origin in a walk of length 2n, i.e., the number of times
Si = 0 happens, for i = 1, . . . , 2n. They computed moments up to E[R6] and asked
for a closed formula for E[Rk] and also whether E[Rk] ∼ ckn

k/2 holds.
The answers to these questions can be found in [4] as opposed to [1]. There,

the factorial moments E[Rk] were computed. We state the formula only for even n:

E[Rk
n] = k!

k
∑

i=0

(−1)k−i

(

k

i

)( i
2
+ n

n

)

.

Ordinary moments can be recovered from these formulae as linear combinations
with Stirling numbers of the second kind (Stirling subset numbers), see [3].

E[Rk
n] =

k
∑

i=0

{

k

i

}

E[Ri
n].

To answer the asymptotics question, we use generating functions

E[Rk
n] = 4−nk![zn]

(1 −
√
1− 4z)k

(1− 4z)1+
k

2

,
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and singularity analysis of generating functions, as nicely described in [2]. One
must expand around the dominant singularity (here z = 1

4
),

(1−
√
1− 4z)k

(1− 4z)1+
k

2

∼ (1− 4z)−1−k

2 ,

and use a transfer theorem

E[Rk
n] ∼ 4−nk![zn](1− 4z)−1−k

2 = k!

(k
2
+ n

n

)

∼ k!

(k/2)!
nk/2.

For odd k = 2j + 1, the factor may be rewritten as follows:

k!

(k/2)!
=

(2j + 1)!

(j + 1
2
)!

=
22j+1j!√

π
.

For ordinary moments, the leading terms in the asymptotic expansion are the same.

E[Rk
n] ∼

k!

(k/2)!
nk/2.
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