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A COMMON GENERALIZATION OF THE INTERMEDIATE

VALUE THEOREM AND ROUCHÉ’S THEOREM

Richard Bayne, Terrence Edwards, and Myung H. Kwack

Abstract. A simple proof of a theorem unifying Bolzano’s Theorem

[8], the Intermediate Value Theorem, Rouché’s Theorem [3] and its ex-

tensions to differentiable maps to R
n [2, 6, 9] is obtained. This unifying

theorem in particular shows that in Professor Baker’s [1] examples where

the number of solutions of f(x) = y for a continuous map f :B2 → R2,

y 6∈ f(∂B2), from the unit ball B2 in the plane R2 is not exactly the abso-

lute value of the winding number of the curve f(∂B2) about y, the number

of the connected components of the solution set counted with multiplicity

coincides with the winding number.

1. Introduction. Professor Shih [8] has observed that Bolzano’s

Theorem, an equivalent of the Intermediate Value Theorem, may be stated

as follows: If f is a real-valued continuous function on the closed interval

I = [−1, 1] and xf(x) > 0 for x ∈ ∂I, the boundary of I, then f has at

least one zero in I. Theorem A presents an analogue of Bolzano’s Theorem

[8] and Rouché’s Theorem [1, 3] for the n-dimensional complex plane Cn.

Theorem A. Let Ω be a bounded domain in Cn and let f, g: Ω → Cn

be continuous and holomorphic in Ω. Then

1. [9] The map f has exactly one zero in Ω if the origin O ∈ Ω and

Re(z · f(z)) > 0 for z ∈ ∂Ω.

2. [2, 6] The maps f and g have the same number of zeros counting

multiplicity if

|f(z)− g(z)| < |f(z)| for z ∈ ∂Ω.

In this note, using the notion of intersection number defined for con-

tinuous maps [7], a simple proof of a unifying generalization of Theorem A

to continuous maps in higher dimensions is obtained. The proof is simple,

direct, and accessible.

2. Preliminaries. Definitions and terminologies are adopted from

Guillemin and Pollack [4]. Let f :X → Y be a smooth map from a manifold

X with boundary ∂X to a manifold Y . Submanifolds and the boundary of a

manifold with orientation are as usual provided with induced orientations.

A point y ∈ Y is a regular value of f :X → Y if dfx(Tx(X)) = Ty(Y ) for

x ∈ f−1(y), where dfx denotes the differential map of Tx(X), the tangent

space of X at x. The set of regular values of f , R(f), is dense in Y by
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Sard’s Theorem [4]. Suppose X ⊂ Rn is a domain and A ⊂ X. The

maps f, g:X → Y are (smoothly in X) [mod (A, y)] homotopic if there is a

continuous map F : (α, β)×X → Y , [0, 1] ⊂ (α, β), (smooth in (α, β)×X),

[y ∈ Y −F ([0, 1]×A)] with F (0, z) = f(z) and F (1, z) = g(z). If f :X → Y

is a map and D ⊂ X , the restriction of f to D will be denoted by fD.

Definition 1. Let Ω ⊂ Rn be a bounded domain and let f : Ω → Rn be

continuous and differentiable in Ω with y ∈ Rn − f(∂Ω). The intersection

number, I(f, y), of f(Ω) with y is defined as lim supyi→y{N(f, yi) : yi ∈

R(f)}, where N(f, yi) denotes the total number of preimages x ∈ f−1(yi)

counting orientation, i.e., with a preimage x making a contribution +1 or

−1 depending whether the determinant of (df)x is positive or negative,

respectively.

Proposition 1. Let Ω ⊂ Rn be a bounded domain and let f : Ω → Rn

be continuous and differentiable in Ω with y ∈ Rn−f(∂Ω). Then I(f, w) =

I(f, y) for w ∈ W , the component of Rn − f(∂Ω) containing y.

Proof. Since W ∩R(f) is connected and dense in W , it suffices to show

that the map h defined by h(z) = N(f, z) is locally constant in W ∩R(f).

Let z ∈ W ∩ R(f). If f−1(z) = ∅, then there is a neighborhood V ⊂ W

of z such that f−1(V ) = ∅ and thus, h(w) = 0 for w ∈ V . Suppose

f−1(z) = {x1, . . . , xk}. There is an open neighborhood V ⊂ W of z and

open neighborhoods Ui of xi such that (i) f−1(V ) = U1∪· · ·∪Uk, (ii) the sets

U i ⊂ Ω are pairwise disjoint, and (iii) each fi:Ui → V is a diffeomorphism.

This shows h(w) = h(z) for w ∈ V .

Proposition 2. Let Ω be a bounded domain in Rn and [0, 1] ⊂ (α, β).

Let G: (α, β)×Ω → R
n be continuous and differentiable in (α, β)×Ω with

y ∈ Rn −G((α, β) × ∂Ω). Then I(F0, y) = I(F1, y), where Ft(x) = G(t, x).

Proof. Let t0 ∈ [0, 1]. From the compactness of [0, 1], it is enough to

show that there is an ǫ > 0 such that I(Ft, y) = I(Ft0 , y) if t ∈ (t0−ǫ, t0+ǫ).

The map H on (α, β) × Ω defined by H(t, x) = (t, Ft(x)) is differentiable

and JH(t, x) = det ∂H(t,z)
∂(t,z) = det ∂Ft(x)

∂(x) for x ∈ Ω.

If H−1(t0, y) = ∅, there is a neighborhood V of (t0, y) with (i)

H−1(V ) = ∅ and (ii) [t0 − ǫ, t0 + ǫ] × Br(y) ⊂ V for ǫ > 0 and r > 0

where Br(y) = {w ∈ R
n : |w − y| < r}. Since for t ∈ [t0 − ǫ, t0 + ǫ],

F−1
t (Br(y)) = ∅, we get I(Ft, y) = I(Ft0 , y) = 0.

Suppose H−1(t0, y) 6= ∅. Let V be a neighborhood of (t0, y) with (i)

H−1(V ) ⊂ (α, β) × Ω and (ii) [t0 − ǫ1, t0 + ǫ1] × Br′(y) ⊂ V for ǫ1 > 0

and r′ > 0. Let p ∈ Br′(y) ∩ R(Ft0). If H
−1(t0, p) = ∅, we have I(Ft, p) =



28 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

I(Ft0 , p) = 0, as in the previous case, for t ∈ [t0 − ǫ, t0 + ǫ] with 0 < ǫ < ǫ1
and hence, I(Ft, y) = I(Ft0 , y) = 0 from Proposition 1. Now suppose

H−1(t0, p) = {z1, . . . , zk}. Since (t0, p) ∈ R(H) and so JH(t0, zi) 6= 0,

there are 0 < ǫ′ < ǫ1 and open neighborhoods Ui of zi such that (i) U i are

pairwise disjoint and (ii) H is diffeomorphic on (t0 − ǫ′, t0 + ǫ′)×Ui. Then

Ft is also diffeomorphic on Ui for t ∈ (t0 − ǫ′, t0 + ǫ′). There are numbers

r > 0 and ǫ > 0 such that (t0 − ǫ, t0 + ǫ) × Br(p) ⊂ (t0 − ǫ′, t0 + ǫ′) ×

Br′(y) ⊂
⋂

i H((t0 − ǫ′, t0 + ǫ′)×Ui). It follows that for t ∈ (t0 − ǫ, t0 + ǫ),

F−1
t (Br(p)) ⊂

⋃

i Ui and so I(Ft, p) = I(Ft0 , p) and thus from Proposition

1, I(Ft, y) = I(Ft0 , y).

Definition 2. Let Ω be a bounded domain in Rn and let f : Ω → Rn

be continuous and differentiable in Ω with y ∈ Rn − f(∂Ω). Let A ⊂ Ω

be a component of f−1(y). The order of multiplicity of f at A, µA(f), is

defined by µA(f) = I(f
U
, y), where U ⊂ Ω is a domain containing A with

U ∩ f−1(y) = A.

Remark. This definition agrees with that of order of multiplicity of

holomorphic maps in Cn at an isolated preimage point [2].

Theorem 3. Let Ω ⊂ Rn be a bounded domain and let f : Ω → Rn be

continuous and differentiable in Ω with y ∈ Rn − f(∂Ω). Then

(1). f−1(y) 6= ∅ if I(f, y) 6= 0.

(2). I(f, y) = I(g, y) if g: Ω → Rn is mod (∂Ω, y) homotopic smoothly in Ω

to f .

(3). I(f, y) =
∑

i µAi
(f), where {A1, . . . , Ak} are the components of

f−1(y).

Proof.

(1). Assume I(f, y) 6= 0. A sequence yk ∈ R(f) converges to y and a

sequence xk ∈ f−1(yk) has a limit point x ∈ Ω with f(x) = y.

(2). This follows from Proposition 2.

(3). Let Ui be open domains such that (i) Ai ⊂ Ui ⊂ U i ⊂ Ω, (ii) U i

are pairwise disjoint, and (iii) y 6∈ f(
⋃

i ∂Ui ∪ (∂Ω)). Let yk ∈ R(f)

be a sequence converging to y such that f−1(yk) ⊂
⋃

Ui. Now

I(f, y) = lim supk I(f, yk) = lim supk
∑

i I(fU i

, yk) =
∑

i I(fUi

, y) =
∑

i µAi
(f).

3. Main Results. An extension of the definition of intersection

number to continuous f : Ω → Rn with y ∈ Rn − f(∂Ω), where Ω is a

bounded domain in Rn is now given. By the Stone-Weierstrass Theorem

[5] there is a sequence of polynomials Pj : Ω → Rn which converges uniformly

to f . The following lemma will facilitate a proof of Theorem 4, extending

the collection of maps in Theorem 3 to a collection of continuous maps.
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Convergence Lemma. Let Ω be a bounded domain inRn and let f : Ω →

Rn be continuous with y ∈ Rn − f(∂Ω). Suppose Pk, Qj are sequences of

polynomials converging uniformly to f on Ω. Then I(Pj , y) = I(Qk, y) for

j, k ≥ N for a number N .

Proof. Let r = infz∈∂Ω{|y − z| > 0}. There is an integer N such that

sup{|g(x)− f(x)| : g(x) = Pk(x) or g(x) = Qj(x), x ∈ ∂Ω, j, k > N} <
r

4
.

Let k, j > N and define Fk,j : [0, 1] × Ω → R
n by Fk,j(t, x) = tPk(x) +

(1 − t)Qj(x). Since y 6∈ Fk,j([0, 1] × ∂Ω), Fk,j defines a smoothly in Ω

mod (∂Ω, y) homotopy of the polynomials Pk, Qj: Ω → Rn. The conclusion

follows from Theorem 3(2).

By the Convergence Lemma the notions of intersection number and

order of multiplicity may be extended to continuous maps.

Definition 3. Let Ω be a bounded domain in Rn and let f : Ω → Rn

be a continuous map. Let y ∈ Rn − f(∂Ω) and let A be a component of

f−1(y).

(1). The intersection number, I(f, y), of f(Ω) with y is defined by I(f, y) =

lim sup I(Pi, y), where Pi: Ω → R
n is a sequence of polynomials which

converges uniformly to f .

(2). The order of multiplicity, µA(f), of f at A is defined by µA(f) =

lim sup I(f
U
, y), where U ⊂ Ω is a domain containing A with U ∩

f−1(y) = A.

Theorem 4 below, the main result, is a common generalization of

Bolzano’s Theorem, the Intermediate Value Theorem, Rouché’s Theorem

and Theorem A as Corollary 5 demonstrates.

Theorem 4. Let Ω ⊂ R
n be a bounded domain and let f : Ω → R

n be

continuous with y ∈ R
n − f(∂Ω). Then

(1). f−1(y) 6= ∅ if I(f, y) 6= 0.

(2). I(f, y) = I(g, y) if g: Ω → Rn is continuous and ∂f, ∂g: ∂Ω → Rn−{y}

are homotopic.

(3). I(f, y) =
∑

i µAi
(f), where {A1, . . . , Ak} are the components of

f−1(y).

Proof.

(1). Suppose Pj : Ω → Rn is a sequence of polynomials which converges

uniformly to f such that I(Pj , y) = I(f, y). Then I(Pj , y) 6= 0 for all j
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and so for a sequence xj ∈ Ω, Pj(xj) = y. Then f(x) = y where x ∈ Ω

is a limit point of a convergent subsequence of xj .

(2). Let G: ([0, 1]×∂Ω) → Rn−{y} be a homotopy of ∂f, ∂g: ∂Ω → Rn−{y}

with G(0, x) = ∂f(x) andG(1, x) = ∂g(x). Define a map F on ({0, 1}×

Ω) ∪ ([0, 1]× ∂Ω) by F (t, x) = G(t, x) for (t, x) ∈ ([0, 1]× ∂Ω) and for

x ∈ Ω, F (0, x) = f(x) and F (1, x) = g(x). By the Stone-Weierstrass

Theorem there is a sequence of polynomials Fk: Ω → R
n converging

uniformly to F on ({0, 1}×Ω)∪([0, 1]×∂Ω). Define Qk,t,t′ : [0, 1]×Ω →

Rn for t, t′ ∈ [0, 1] by Qk,t,t′(s, x) = sFk(t, x)+(1−s)Fk(t
′, x). For each

t0 ∈ [0, 1] there is an ǫ > 0 such that for t, t′ ∈ [t0 − ǫ, t0 + ǫ], we have

y 6∈ Qk,t,t′([0, 1]×∂Ω) eventually, say for k ≥ L. Let t, t′ ∈ [t0−ǫ, t0+ǫ].

Then Qk,t,t′ defines a smoothly in Ω mod (∂Ω, y) homotopy of the

polynomials Pk,t, Pk,t′ : Ω → Rn, where Pk,t(x) = Fk(t, x). By the

compactness of [0, 1] the maps Pk,0, Pk,1 are mod (∂Ω, y) homotopic.

The conclusion follows from Theorem 3(2).

(3). Let Wi ⊂ Ω be domains containing Ai with W i ∩ f−1(y) = Ai and

with pairwise disjoint closures. Suppose Pj : Ω → Rn is a sequence of

polynomials converging uniformly to f such that for an integer L and

j ≥ L, I(Pj , y) = I(f, y) and I((Pj)W i

, y) = I(f
W i

, y). By Theorem

3, I(Pj , y) =
∑

i I((Pj)W i

, y) and thus I(f, y) =
∑

i I(fW i

, y).

Corollary 5 extends Theorem A to continuous maps.

Corollary 5. Let Ω be a bounded domain in Rn and let f, g: Ω → Rn be

continuous. Then f−1(O) and g−1(O) have the same number of components

when counted with multiplicity if any one of the following is satisfied for

z ∈ ∂Ω.

i. |f(z) + g(z)| < |f(z)|+ |g(z)|.

ii. |f(z)− g(z)| < |f(z)|.

iii. Re(f(z) · g(z)) > 0, where Rn 6= Ck.

Proof. If any one of the conditions is satisfied for z ∈ ∂Ω, the vectors

g(z) and f(z) are not collinear and so the map F (t, z) = tf(z)+ (1− t)g(z)

defines a mod (∂Ω, O) homotopy of f and g. Theorem 4 finishes the proof.

Corollary 6 extends Theorem A(1).

Corollary 6. Let Ω be a bounded domain in Cn containing O and let

f : Ω → Cn be a continuous map. If Re(z · f(z)) > 0 for z ∈ ∂Ω, then

I(f,O) = 1 and so f−1(O) 6= ∅. In addition, if f is holomorphic in Ω, then

f−1(O) is a singleton.

Proof. The first part is immediate from Corollary 5 and Theorem 4(1).

The second part follows from the first and the fact that a compact analytic
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subset of Cn is a finite set and an order of multiplicity for a holomorphic

map is nonnegative.

Professor Baker [1] presented examples of maps below where the num-

ber of solutions of f(x) = y for a continuous map f :B2 → R2, y 6∈ f(∂B),

is not exactly the absolute value, |γ(f(∂B2), y)|, of the winding number of

the curve f(∂B2) about y. Theorem 4 shows that if each connected com-

ponent of the solution set is counted with multiplicity, the total number

coincides with the winding number.

Examples. Let f, g, h be maps on the unit disk B2 defined by f(x, y) =

(x, |y|), g(x, y) = (x2 − y2,−2xy) and h(x, y) = φ(x2 + y2)(x, y), where

φ(t) =

{

0, if 0 ≤ t ≤ 1
2 ;

2t− 1, if 1
2 ≤ t ≤ 1 .

(1). The winding number γ(f(∂B2), (0, 0)) = 0. The equation f(x, y) =

(0, 0) has exactly one solution (0, 0) with µ(0,0)(f) = 0 and the equa-

tion f(x, y) = (0, 1
2 ) has exactly two solutions with µ(0, 1

2
)(f) = 1 and

µ(0,− 1

2
)(f) = −1.

(2). The winding number γ(g(∂B2), (0, 0)) = −2. The equation g(x, y) =

(0, 0) has exactly one solution (0, 0) with µ(0,0)(g) = −2 and the equa-

tion g(x, y) = (14 , 0) has exactly two solutions (0, 0) with µ( 1

2
,0)(g) =

−1 and µ(− 1

2
,0)(g) = −1.

(3). The winding number γ(h(∂B2), (0, 0)) = 1. The solution of the equa-

tion h(x, y) = (0, 0) is the connected set A = {(x, y) : |(x, y)| ≤ 1
2}

with µA(h) = 1.
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