A COMMON GENERALIZATION OF THE INTERMEDIATE VALUE THEOREM AND ROUCHÉ'S THEOREM

Richard Bayne, Terrence Edwards, and Myung H. Kwack

Abstract. A simple proof of a theorem unifying Bolzano's Theorem [8], the Intermediate Value Theorem, Rouché's Theorem [3] and its extensions to differentiable maps to \mathbb{R}^n [2, 6, 9] is obtained. This unifying theorem in particular shows that in Professor Baker's [1] examples where the number of solutions of f(x) = y for a continuous map $f: B^2 \to \mathbb{R}^2$, $y \notin f(\partial B^2)$, from the unit ball B^2 in the plane \mathbb{R}^2 is not exactly the absolute value of the winding number of the curve $f(\partial B^2)$ about y, the number of the connected components of the solution set counted with multiplicity coincides with the winding number.

1. Introduction. Professor Shih [8] has observed that Bolzano's Theorem, an equivalent of the Intermediate Value Theorem, may be stated as follows: If f is a real-valued continuous function on the closed interval I = [-1, 1] and xf(x) > 0 for $x \in \partial I$, the boundary of I, then f has at least one zero in I. Theorem A presents an analogue of Bolzano's Theorem [8] and Rouché's Theorem [1, 3] for the n-dimensional complex plane \mathbb{C}^n .

<u>Theorem A</u>. Let Ω be a bounded domain in \mathbb{C}^n and let $f, g: \overline{\Omega} \to \mathbb{C}^n$ be continuous and holomorphic in Ω . Then

- 1. [9] The map f has exactly one zero in Ω if the origin $O \in \Omega$ and $Re(\overline{z} \cdot f(z)) > 0$ for $z \in \partial \Omega$.
- 2. [2, 6] The maps f and g have the same number of zeros counting multiplicity if

$$|f(z) - g(z)| < |f(z)|$$
 for $z \in \partial \Omega$.

In this note, using the notion of intersection number defined for continuous maps [7], a simple proof of a unifying generalization of Theorem A to continuous maps in higher dimensions is obtained. The proof is simple, direct, and accessible.

2. Preliminaries. Definitions and terminologies are adopted from Guillemin and Pollack [4]. Let $f: X \to Y$ be a smooth map from a manifold X with boundary ∂X to a manifold Y. Submanifolds and the boundary of a manifold with orientation are as usual provided with induced orientations. A point $y \in Y$ is a regular value of $f: X \to Y$ if $df_x(T_x(X)) = T_y(Y)$ for $x \in f^{-1}(y)$, where df_x denotes the differential map of $T_x(X)$, the tangent space of X at x. The set of regular values of f, R(f), is dense in Y by Sard's Theorem [4]. Suppose $X \subset \mathbb{R}^n$ is a domain and $A \subset \overline{X}$. The maps $f, g: \overline{X} \to Y$ are (smoothly in X) [mod (A, y)] homotopic if there is a continuous map $F: (\alpha, \beta) \times \overline{X} \to Y$, $[0, 1] \subset (\alpha, \beta)$, (smooth in $(\alpha, \beta) \times X$), $[y \in Y - F([0, 1] \times A)]$ with F(0, z) = f(z) and F(1, z) = g(z). If $f: X \to Y$ is a map and $D \subset X$, the restriction of f to D will be denoted by f_D .

<u>Definition 1</u>. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f: \overline{\Omega} \to \mathbb{R}^n$ be continuous and differentiable in Ω with $y \in \mathbb{R}^n - f(\partial \Omega)$. The intersection number, I(f, y), of $f(\Omega)$ with y is defined as $\limsup_{y_i \to y} \{N(f, y_i) : y_i \in R(f)\}$, where $N(f, y_i)$ denotes the total number of preimages $x \in f^{-1}(y_i)$ counting orientation, i.e., with a preimage x making a contribution +1 or -1 depending whether the determinant of $(df)_x$ is positive or negative, respectively.

<u>Proposition 1.</u> Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f: \overline{\Omega} \to \mathbb{R}^n$ be continuous and differentiable in Ω with $y \in \mathbb{R}^n - f(\partial \Omega)$. Then I(f, w) = I(f, y) for $w \in W$, the component of $\mathbb{R}^n - f(\partial \Omega)$ containing y.

<u>Proof.</u> Since $W \cap R(f)$ is connected and dense in W, it suffices to show that the map h defined by h(z) = N(f, z) is locally constant in $W \cap R(f)$. Let $z \in W \cap R(f)$. If $f^{-1}(z) = \emptyset$, then there is a neighborhood $V \subset W$ of z such that $f^{-1}(V) = \emptyset$ and thus, h(w) = 0 for $w \in V$. Suppose $f^{-1}(z) = \{x_1, \ldots, x_k\}$. There is an open neighborhood $V \subset W$ of z and open neighborhoods U_i of x_i such that (i) $f^{-1}(V) = U_1 \cup \cdots \cup U_k$, (ii) the sets $\overline{U}_i \subset \Omega$ are pairwise disjoint, and (iii) each $f_i: U_i \to V$ is a diffeomorphism. This shows h(w) = h(z) for $w \in V$.

<u>Proposition 2.</u> Let Ω be a bounded domain in \mathbb{R}^n and $[0,1] \subset (\alpha,\beta)$. Let $\overline{G:(\alpha,\beta) \times \overline{\Omega} \to \mathbb{R}^n}$ be continuous and differentiable in $(\alpha,\beta) \times \Omega$ with $y \in \mathbb{R}^n - G((\alpha,\beta) \times \partial\Omega)$. Then $I(F_0,y) = I(F_1,y)$, where $F_t(x) = G(t,x)$.

<u>Proof.</u> Let $t_0 \in [0, 1]$. From the compactness of [0, 1], it is enough to show that there is an $\epsilon > 0$ such that $I(F_t, y) = I(F_{t_0}, y)$ if $t \in (t_0 - \epsilon, t_0 + \epsilon)$. The map H on $(\alpha, \beta) \times \overline{\Omega}$ defined by $H(t, x) = (t, F_t(x))$ is differentiable and $JH(t, x) = \det \frac{\partial H(t, z)}{\partial(t, z)} = \det \frac{\partial F_t(x)}{\partial(x)}$ for $x \in \Omega$.

If $H^{-1}(t_0, y) = \emptyset$, there is a neighborhood V of (t_0, y) with (i) $H^{-1}(V) = \emptyset$ and (ii) $[t_0 - \epsilon, t_0 + \epsilon] \times B_r(y) \subset V$ for $\epsilon > 0$ and r > 0where $B_r(y) = \{w \in \mathbb{R}^n : |w - y| < r\}$. Since for $t \in [t_0 - \epsilon, t_0 + \epsilon]$, $F_t^{-1}(B_r(y)) = \emptyset$, we get $I(F_t, y) = I(F_{t_0}, y) = 0$.

Suppose $H^{-1}(t_0, y) \neq \emptyset$. Let V be a neighborhood of (t_0, y) with (i) $H^{-1}(V) \subset (\alpha, \beta) \times \Omega$ and (ii) $[t_0 - \epsilon_1, t_0 + \epsilon_1] \times B_{r'}(y) \subset V$ for $\epsilon_1 > 0$ and r' > 0. Let $p \in B_{r'}(y) \cap R(F_{t_0})$. If $H^{-1}(t_0, p) = \emptyset$, we have $I(F_t, p) =$
$$\begin{split} I(F_{t_0},p) &= 0, \text{ as in the previous case, for } t \in [t_0 - \epsilon, t_0 + \epsilon] \text{ with } 0 < \epsilon < \epsilon_1 \\ \text{and hence, } I(F_t,y) &= I(F_{t_0},y) = 0 \text{ from Proposition 1. Now suppose} \\ H^{-1}(t_0,p) &= \{z_1,\ldots,z_k\}. \text{ Since } (t_0,p) \in R(H) \text{ and so } JH(t_0,z_i) \neq 0, \\ \text{there are } 0 < \epsilon' < \epsilon_1 \text{ and open neighborhoods } U_i \text{ of } z_i \text{ such that (i) } \overline{U}_i \text{ are} \\ \text{pairwise disjoint and (ii) } H \text{ is diffeomorphic on } (t_0 - \epsilon', t_0 + \epsilon') \times U_i. \text{ Then } \\ F_t \text{ is also diffeomorphic on } U_i \text{ for } t \in (t_0 - \epsilon', t_0 + \epsilon'). \text{ There are numbers} \\ r > 0 \text{ and } \epsilon > 0 \text{ such that } (t_0 - \epsilon, t_0 + \epsilon) \times \overline{B_r(p)} \subset (t_0 - \epsilon', t_0 + \epsilon') \times \\ B_{r'}(y) \subset \bigcap_i H((t_0 - \epsilon', t_0 + \epsilon') \times U_i). \text{ It follows that for } t \in (t_0 - \epsilon, t_0 + \epsilon), \\ F_t^{-1}(B_r(p)) \subset \bigcup_i U_i \text{ and so } I(F_t,p) = I(F_{t_0},p) \text{ and thus from Proposition } \\ 1, I(F_t,y) = I(F_{t_0},y). \end{split}$$

<u>Definition 2</u>. Let Ω be a bounded domain in \mathbb{R}^n and let $f:\overline{\Omega} \to \mathbb{R}^n$ be continuous and differentiable in Ω with $y \in \mathbb{R}^n - f(\partial\Omega)$. Let $A \subset \Omega$ be a component of $f^{-1}(y)$. The order of multiplicity of f at A, $\mu_A(f)$, is defined by $\mu_A(f) = I(f_{\overline{U}}, y)$, where $U \subset \Omega$ is a domain containing A with $\overline{U} \cap f^{-1}(y) = A$.

<u>Remark</u>. This definition agrees with that of order of multiplicity of holomorphic maps in \mathbb{C}^n at an isolated preimage point [2].

<u>Theorem 3</u>. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f: \overline{\Omega} \to \mathbb{R}^n$ be continuous and differentiable in Ω with $y \in \mathbb{R}^n - f(\partial \Omega)$. Then

- (1). $f^{-1}(y) \neq \emptyset$ if $I(f, y) \neq 0$.
- (2). I(f, y) = I(g, y) if $g: \overline{\Omega} \to \mathbb{R}^n$ is mod $(\partial \Omega, y)$ homotopic smoothly in Ω to f.
- (3). $I(f,y) = \sum_{i} \mu_{A_i}(f)$, where $\{A_1, \ldots, A_k\}$ are the components of $f^{-1}(y)$.

<u>Proof</u>.

- (1). Assume $I(f, y) \neq 0$. A sequence $y_k \in R(f)$ converges to y and a sequence $x_k \in f^{-1}(y_k)$ has a limit point $x \in \Omega$ with f(x) = y.
- (2). This follows from Proposition 2.
- (3). Let U_i be open domains such that (i) $A_i \subset U_i \subset \overline{U}_i \subset \Omega$, (ii) \overline{U}_i are pairwise disjoint, and (iii) $y \notin f(\bigcup_i \partial U_i \cup (\partial \Omega))$. Let $y_k \in R(f)$ be a sequence converging to y such that $f^{-1}(y_k) \subset \bigcup U_i$. Now $I(f, y) = \limsup_k I(f, y_k) = \limsup_k \sum_i I(f_{\overline{U}_i}, y_k) = \sum_i I(f_{\overline{U}_i}, y) = \sum_i \mu_{A_i}(f)$.

3. Main Results. An extension of the definition of intersection number to continuous $f: \overline{\Omega} \to \mathbb{R}^n$ with $y \in \mathbb{R}^n - f(\partial\Omega)$, where Ω is a bounded domain in \mathbb{R}^n is now given. By the Stone-Weierstrass Theorem [5] there is a sequence of polynomials $P_j: \overline{\Omega} \to \mathbb{R}^n$ which converges uniformly to f. The following lemma will facilitate a proof of Theorem 4, extending the collection of maps in Theorem 3 to a collection of continuous maps. Convergence Lemma. Let Ω be a bounded domain in \mathbb{R}^n and let $f: \overline{\Omega} \to \mathbb{R}^n$ be continuous with $y \in \mathbb{R}^n - f(\partial \Omega)$. Suppose P_k, Q_j are sequences of polynomials converging uniformly to f on $\overline{\Omega}$. Then $I(P_j, y) = I(Q_k, y)$ for $j, k \geq N$ for a number N.

<u>Proof.</u> Let $r = \inf_{z \in \partial \Omega} \{ |y - z| > 0 \}$. There is an integer N such that

$$\sup\{|g(x) - f(x)| : g(x) = P_k(x) \text{ or } g(x) = Q_j(x), x \in \partial\Omega, j, k > N\} < \frac{r}{4}.$$

Let k, j > N and define $F_{k,j}: [0,1] \times \overline{\Omega} \to \mathbb{R}^n$ by $F_{k,j}(t,x) = tP_k(x) + (1-t)Q_j(x)$. Since $y \notin F_{k,j}([0,1] \times \partial\Omega)$, $F_{k,j}$ defines a smoothly in Ω mod $(\partial\Omega, y)$ homotopy of the polynomials $P_k, Q_j: \overline{\Omega} \to \mathbb{R}^n$. The conclusion follows from Theorem 3(2).

By the Convergence Lemma the notions of intersection number and order of multiplicity may be extended to continuous maps.

<u>Definition 3.</u> Let Ω be a bounded domain in \mathbb{R}^n and let $f:\overline{\Omega} \to \mathbb{R}^n$ be a continuous map. Let $y \in \mathbb{R}^n - f(\partial\Omega)$ and let A be a component of $f^{-1}(y)$.

- (1). The intersection number, I(f, y), of $f(\Omega)$ with y is defined by $I(f, y) = \lim \sup I(P_i, y)$, where $P_i: \overline{\Omega} \to \mathbb{R}^n$ is a sequence of polynomials which converges uniformly to f.
- (2). The order of multiplicity, $\mu_A(f)$, of f at A is defined by $\mu_A(f) = \limsup I(f_{\overline{U}}, y)$, where $U \subset \Omega$ is a domain containing A with $\overline{U} \cap f^{-1}(y) = A$.

Theorem 4 below, the main result, is a common generalization of Bolzano's Theorem, the Intermediate Value Theorem, Rouché's Theorem and Theorem A as Corollary 5 demonstrates.

<u>Theorem 4</u>. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $f: \overline{\Omega} \to \mathbb{R}^n$ be continuous with $y \in \mathbb{R}^n - f(\partial \Omega)$. Then

- (1). $f^{-1}(y) \neq \emptyset$ if $I(f, y) \neq 0$.
- (2). I(f, y) = I(g, y) if $g: \overline{\Omega} \to \mathbb{R}^n$ is continuous and $\partial f, \partial g: \partial \Omega \to \mathbb{R}^n \{y\}$ are homotopic.
- (3). $I(f,y) = \sum_{i} \mu_{A_i}(f)$, where $\{A_1, \ldots, A_k\}$ are the components of $f^{-1}(y)$.

Proof.

(1). Suppose $P_j: \overline{\Omega} \to \mathbb{R}^n$ is a sequence of polynomials which converges uniformly to f such that $I(P_j, y) = I(f, y)$. Then $I(P_j, y) \neq 0$ for all j and so for a sequence $x_j \in \Omega$, $P_j(x_j) = y$. Then f(x) = y where $x \in \Omega$ is a limit point of a convergent subsequence of x_j .

- (2). Let $G: ([0,1] \times \partial \Omega) \to \mathbb{R}^n \{y\}$ be a homotopy of $\partial f, \partial g: \partial \Omega \to \mathbb{R}^n \{y\}$ with $G(0,x) = \partial f(x)$ and $G(1,x) = \partial g(x)$. Define a map F on $(\{0,1\} \times \overline{\Omega}) \cup ([0,1] \times \partial \Omega)$ by F(t,x) = G(t,x) for $(t,x) \in ([0,1] \times \partial \Omega)$ and for $x \in \overline{\Omega}, F(0,x) = f(x)$ and F(1,x) = g(x). By the Stone-Weierstrass Theorem there is a sequence of polynomials $F_k: \overline{\Omega} \to \mathbb{R}^n$ converging uniformly to F on $(\{0,1\} \times \overline{\Omega}) \cup ([0,1] \times \partial \Omega)$. Define $Q_{k,t,t'}: [0,1] \times \overline{\Omega} \to \mathbb{R}^n$ for $t, t' \in [0,1]$ by $Q_{k,t,t'}(s,x) = sF_k(t,x) + (1-s)F_k(t',x)$. For each $t_0 \in [0,1]$ there is an $\epsilon > 0$ such that for $t, t' \in [t_0 - \epsilon, t_0 + \epsilon]$, we have $y \notin Q_{k,t,t'}$ (defines a smoothly in Ω mod $(\partial \Omega, y)$ homotopy of the polynomials $P_{k,t}, P_{k,t'}: \overline{\Omega} \to \mathbb{R}^n$, where $P_{k,t}(x) = F_k(t,x)$. By the compactness of [0,1] the maps $P_{k,0}, P_{k,1}$ are mod $(\partial \Omega, y)$ homotopic. The conclusion follows from Theorem 3(2).
- (3). Let $W_i \subset \Omega$ be domains containing A_i with $\overline{W}_i \cap f^{-1}(y) = A_i$ and with pairwise disjoint closures. Suppose $P_j: \overline{\Omega} \to \mathbb{R}^n$ is a sequence of polynomials converging uniformly to f such that for an integer L and $j \geq L$, $I(P_j, y) = I(f, y)$ and $I((P_j)_{\overline{W}_i}, y) = I(f_{\overline{W}_i}, y)$. By Theorem $3, I(P_j, y) = \sum_i I((P_j)_{\overline{W}_i}, y)$ and thus $I(f, y) = \sum_i I(f_{\overline{W}_i}, y)$.

Corollary 5 extends Theorem A to continuous maps.

<u>Corollary 5</u>. Let Ω be a bounded domain in \mathbb{R}^n and let $f, g: \overline{\Omega} \to \mathbb{R}^n$ be continuous. Then $f^{-1}(O)$ and $g^{-1}(O)$ have the same number of components when counted with multiplicity if any one of the following is satisfied for $z \in \partial \Omega$.

i. |f(z) + g(z)| < |f(z)| + |g(z)|.

ii.
$$|f(z) - g(z)| < |f(z)|.$$

iii. $Re(\overline{f(z)} \cdot g(z)) > 0$, where $\mathbb{R}^n \neq \mathbb{C}^k$.

<u>Proof.</u> If any one of the conditions is satisfied for $z \in \partial\Omega$, the vectors g(z) and f(z) are not collinear and so the map F(t, z) = tf(z) + (1-t)g(z) defines a mod $(\partial\Omega, O)$ homotopy of f and g. Theorem 4 finishes the proof.

Corollary 6 extends Theorem A(1).

<u>Corollary 6</u>. Let Ω be a bounded domain in \mathbb{C}^n containing O and let $f:\overline{\Omega} \to \mathbb{C}^n$ be a continuous map. If $\operatorname{Re}(\overline{z} \cdot f(z)) > 0$ for $z \in \partial\Omega$, then I(f,O) = 1 and so $f^{-1}(O) \neq \emptyset$. In addition, if f is holomorphic in Ω , then $f^{-1}(O)$ is a singleton.

<u>Proof.</u> The first part is immediate from Corollary 5 and Theorem 4(1). The second part follows from the first and the fact that a compact analytic

subset of \mathbb{C}^n is a finite set and an order of multiplicity for a holomorphic map is nonnegative.

Professor Baker [1] presented examples of maps below where the number of solutions of f(x) = y for a continuous map $f: B^2 \to \mathbb{R}^2, y \notin f(\partial B)$, is not exactly the absolute value, $|\gamma(f(\partial B^2), y)|$, of the winding number of the curve $f(\partial B^2)$ about y. Theorem 4 shows that if each connected component of the solution set is counted with multiplicity, the total number coincides with the winding number.

Examples. Let f, g, h be maps on the unit disk B^2 defined by $f(x, y) = (x, |y|), g(x, y) = (x^2 - y^2, -2xy)$ and $h(x, y) = \phi(x^2 + y^2)(x, y)$, where

$$\phi(t) = \begin{cases} 0, & \text{if } 0 \le t \le \frac{1}{2};\\ 2t - 1, & \text{if } \frac{1}{2} \le t \le 1 \end{cases}.$$

- (1). The winding number $\gamma(f(\partial B^2), (0, 0)) = 0$. The equation f(x, y) = (0, 0) has exactly one solution (0, 0) with $\mu_{(0,0)}(f) = 0$ and the equation $f(x, y) = (0, \frac{1}{2})$ has exactly two solutions with $\mu_{(0,\frac{1}{2})}(f) = 1$ and $\mu_{(0,-\frac{1}{2})}(f) = -1$.
- (2). The winding number $\gamma(g(\partial B^2), (0, 0)) = -2$. The equation g(x, y) = (0, 0) has exactly one solution (0, 0) with $\mu_{(0,0)}(g) = -2$ and the equation $g(x, y) = (\frac{1}{4}, 0)$ has exactly two solutions (0, 0) with $\mu_{(\frac{1}{2}, 0)}(g) = -1$ and $\mu_{(-\frac{1}{2}, 0)}(g) = -1$.
- (3). The winding number $\gamma(h(\partial B^2), (0,0)) = 1$. The solution of the equation h(x,y) = (0,0) is the connected set $A = \{(x,y) : |(x,y)| \le \frac{1}{2}\}$ with $\mu_A(h) = 1$.

References

- J. A. Baker, "Plane Curves, Polar Coordinates and Winding Numbers," *Mathematics Magazine*, 64 (1991), 75–91.
- E. M. Chirka, Complex Analytic Sets, Mathematics and Its Applications, Kluwer Academic Publishers, Boston, 1989.
- I. Glicksberg, "A Remark on Rouché's Theorem," Amer. Math. Monthly, 83 (1976), 186.
- V. Guillemin and A. Pollack, *Differential Topology*, Prentice-Hall, Inc., Englewood, NJ, 1974.

- S. Lang, *Real Analysis*, Addison-Wesley Publishing Co., Reading, MA, 1983.
- N. G. Lloyd, "Remarks on Generalizing Rouché's Theorem," J. London Math. Soc., 20 (1979), 259–272.
- M. Nagumo, "Degree of Mapping of Manifolds Based on That of Euclidean Open Sets," Osaka Math. J., 2 (1950), 105–118.
- M. H. Shih, "An Analog of Bolzano's Theorem for Functions of a Complex Variable," Amer. Math. Monthly, 89 (1982), 210–211.
- M. H. Shih, "Bolzano's Theorem in Several Complex Variables," Proc. Amer. Math. Soc., 79 (1982), 32–34.

Mathematics Subject Classification (2000): 30C15, 55M25

Richard Bayne Department of Mathematics Howard University Washington, D. C. 20059 email: rbayne@howard.edu

Terrence Edwards Department of Mathematics Dillard University New Orleans, LA 70122 email: tajedwards@netscape.net

Myung H. Kwack Department of Mathematics Howard University Washington, D. C. 20059 email: mkwack@howard.edu