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SOME PROPERTIES OF SUMS INVOLVING

PELL NUMBERS

Sergio Falcón Santana and José Luis Dı́az-Barrero

Abstract. In this note we prove that for all positive integers n, the
sum S4n+1 of the first 4n + 1 Pell numbers is a perfect square. As a
consequence, an identity involving binomial coefficients and Pell numbers
is given. Also, sums of an even and odd number of terms of odd order are
evaluated and some divisibility properties are obtained.

1. Introduction. It is well-known that the Pell numbers are 0, 1,
2, 5, 12, 29, 70, 169, 408, 985, . . . where P0 = 0, P1 = 1, and for n ≥ 1,
Pn+1 = 2Pn + Pn−1. From its characteristic equation x2 − 2x − 1 = 0, we
can write a Binet’s formula for Pell numbers. Namely,

Pn =
αn − βn

α− β
, (1)

where α = 1 +
√
2 and β = 1−

√
2. Denoting by Sn the sum of the first n

nonzero Pell numbers, and taking into account (1), it is easy to see that

Sn =
αn+1 + βn+1 − 2

4
. (2)

Furthermore, adding up the terms of Pell’s sequence, we observe that if
n ≡ 1 (mod 4), then

{S4n+1}n≥0 = {S1, S5, S9, S13, . . . } = {1, 72, 412, 2392, . . . }.

In this paper the sequences of sums S4n+1 and its square roots are studied
and some of its properties are used to obtain an identity involving binomial
coefficients and Pell numbers. Furthermore, using the Lucas expression for
Pell numbers in terms of binomial coefficients [1], two more identities are
given. Finally, the partial sums of the sequence of Pell numbers of odd
order are evaluated and some divisibility properties are obtained.

2. Main Results. In what follows, some results for the sequence of
sums S4n+1 and the sequence of its square roots are given. We start with
the following theorem.

Theorem 1. For all n ≥ 0, the sum S4n+1 is a perfect square.
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Proof. The result follows immediately from (2) and taking into account
that αβ = −1. That is,

S4n+1 =
α4n+2 + β4n+2 − 2

4
=

(

α2n+1 + β2n+1

2

)2

(3)

and the proof is complete.

The preceding sum can be used to obtain the following identity involving
binomial coefficients and Pell numbers.

Theorem 2. For all n ≥ 0, we have

n
∑

r=0

(

2n+ 1

2r

)

2r = P2n + P2n+1. (4)

Proof. To prove (4), we need two lemmas.

Lemma 1. If n is a nonnegative integer, then

S4n+1 =

(

n
∑

r=0

(

2n+ 1

2r

)

2r

)2

.

Proof. In fact, from (3), we have that

1

2

(

α2n+1 + β2n+1
)

=
1

2

(

(1 +
√
2)2n+1 + (1−

√
2)2n+1

)

=
1

2

(

1 +

(

2n+ 1

1

)√
2 +

(

2n+ 1

2

)√
2
2
+

(

2n+ 1

3

)√
2
3
+ · · ·

+ 1−
(

2n+ 1

1

)√
2 +

(

2n+ 1

2

)√
2
2 −

(

2n+ 1

3

)√
2
3
+ · · ·

)

= 1 +

(

2n+ 1

2

)

2 +

(

2n+ 1

4

)

22 +

(

2n+ 1

6

)

23 + · · ·

=

n
∑

r=0

(

2n+ 1

2r

)

2r.



VOLUME 18, NUMBER 1, 2006 35

Therefore,

S4n+1 =

(

n
∑

r=0

(

2n+ 1

2r

)

2r

)2

and the proof is complete.

Next, we consider the sequence

{an}n≥0 = {S1/2
4n+1}n≥0 = {1, 7, 41, 239, 1393, . . . },

and we have the following lemma.

Lemma 2. For all n ≥ 0,

an = P2n + P2n+1.

Proof. First, we claim that {an}n≥0 is a generalized Fibonacci sequence
defined by a0 = 1, a1 = 7 and for n ≥ 1,

an+1 = 6an − an−1.

Indeed, from (3), it follows that

an =
α2n+1 + β2n+1

2
→ an−1 =

α2n−1 + β2n−1

2
, an+1 =

α2n+3 + β2n+3

2
.

Now taking into account that

α2 +
1

α2
= β2 +

1

β2
= 6,

we find that

an+1 =
1

2
(α2n+3 + β2n+3)

=
α2n+1

2

(

α2 +
1

α2
− 1

α2

)

+
β2n+1

2

(

β2 +
1

β2
− 1

β2

)

=
α2n+1

2

(

α2 +
1

α2

)

+
β2n+1

2

(

β2 +
1

β2

)

− 1

2
(α2n−1 + β2n−1)

=
(α2n+1 + β2n+1)

2
6− an−1 = 6an − an−1,
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as claimed.

On the other hand, from the characteristic equation of the preceding recur-
sion, namely, x2 − 6x+ 1 = 0 with x1 = α2 and x2 = β2, we get

an = C1α
2n + C2β

2n. (5)

Setting n = 0 and n = 1 in the preceding expression, we obtain

C1 =
α+ 1

α− β
and C2 = − β + 1

α− β
,

and (5) then becomes

an =
(α+ 1)α2n − (β + 1)β2n

α− β
=

(α2n+1 − β2n+1) + (α2n − β2n)

α− β
.

Applying (1), we have an = P2n+1 + P2n and the Lemma is proved.

Theorem 2 then immediately follows from Lemma 1 and Lemma 2 and we
are done.

Theorem 3. The following identities hold for all n ≥ 0.

P2n−1 + P2n+1 =
n
∑

r=0

2n

2n− r

(

2n− r

r

)

22n−2r and

P2n + P2n+2 =

n
∑

r=0

2n+ 1

2n+ 1− r

(

2n+ 1− r

r

)

22n+1−2r.

Proof. We start with a Lemma.

Lemma 3. For all n ≥ 0,

Pn+1 =

⌊n/2⌋
∑

r=0

(

n− r

r

)

2n−2r. (6)
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Proof. We will argue by mathematical induction. For n = 0 the result
trivially holds. Assume that (6) holds and we should prove that

Pn+2 =

⌊(n+1)/2⌋
∑

r=0

(

n+ 1− r

r

)

2n+1−2r.

In fact, if n is even, then

⌊(n+1)/2⌋
∑

r=0

(

n+ 1− r

r

)

2n+1−2r =

⌊n/2⌋
∑

r=0

(

n− r

r

)

2n+1−2r+

⌊n/2⌋
∑

r=0

(

n− r

r − 1

)

2n+1−2r.

Setting j = r − 1 in the last sum, we get

⌊(n+1)/2⌋
∑

r=0

(

n+ 1− r

r

)

2n+1−2r = 2

⌊n/2⌋
∑

r=0

(

n− r

r

)

2n−2r

+

⌊(n−1)/2⌋
∑

j=0

(

n− 1− j

j

)

2n−1−2j = 2Pn+1 + Pn.

Thus, by mathematical induction, formula (6) holds for all even integers
n ≥ 0. Similarly, it can be shown that (6) holds when n is odd.

From (6) and taking into account Pascal’s identity

(

n− k

k − 1

)

+

(

n+ 1− k

k

)

=
n+ 1

n+ 1− k

(

n+ 1− k

k

)

,

we have

P2n−1 + P2n+1 =

n−1
∑

r=0

(

2n− 2− r

r

)

22n−2−2r +

n
∑

r=0

(

2n− r

r

)

22n−2r.
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Setting r = k − 1 in the first of the preceding sums, we obtain

P2n−1 + P2n+1 =

n
∑

k=1

(

2n− 1− k

k − 1

)

22n−2k +

n
∑

r=0

(

2n− r

r

)

22n−2r

=

(

2n

0

)

22n +
n
∑

k=1

2n

2n− k

(

2n− k

k

)

22n−2k.

Similarly,

P2n + P2n+2 =
n−1
∑

r=0

(

2n− 1− r

r

)

22n−1−2r +
n
∑

r=0

(

2n+ 1− r

r

)

22n+1−2r

=

(

2n+ 1

0

)

22n+1 +

n
∑

r=1

[(

2n− r

r − 1

)

+

(

2n+ 1− r

r

)]

22n+1−2r

=

n
∑

r=0

2n+ 1

2n+ 1− k

(

2n+ 1− r

r

)

22n+1−2r.

This completes the proof.

3. Divisibility Properties. Next, we consider sums of an even and
an odd number of terms of odd order in the sequence of Pell numbers and
we obtain the following results.

Theorem 4. For all n ≥ 0,

P2n+1

∣

∣

∣

∣

∣

2n
∑

k=0

P2k+1, and P2n

∣

∣

∣

∣

∣

2n
∑

k=1

P2k−1.
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Proof. Taking into account (1) and the fact that α2 − 1 = 2α and
β2 − 1 = 2β, we have

P1 + P3 + P5 + · · ·+ P4n+1

=
α1 − β1

α− β
+

α3 − β3

α− β
+ · · ·+ α4n+1 − β4n+1

α− β

=
1

α− β

(

α4n+3 − α

α2 − 1
− β4n+3 − β

β2 − 1

)

=
1

α− β

(

α4n+2 − 1

2
− β4n+2 − 1

2

)

=
1

2

α4n+2 − β4n+2

α− β
=

1

2

(

α2n+1 + β2n+1
)

(

α2n+1 − β2n+1

α− β

)

=
1

2

(

2
n
∑

r=0

(

2n+ 1

2r

)

2r

)

P2n+1.

The second part again follows from (1). Indeed, since

α2n + β2n = 2

n
∑

r=0

(

2n

2r

)

2r,

we have that

P1 + P3 + P5 + · · ·+ P4n−1 =
α1 − β1

α− β
+

α3 − β3

α− β
+ · · ·+ α4n−1 − β4n−1

α− β

=
1

α− β

(

α4n+1 − α

α2 − 1
− β4n+1 − β

β2 − 1

)

=
1

α− β

(

α4n − 1

2
− β4n − 1

2

)

=
1

2

α4n − β4n

α− β
=

α2n + β2n

2
· α

2n − β2n

α− β

=
α2n + β2n

2
· P2n
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and the proof is complete.
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