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A NOTE ON CLOSED FUNCTIONS

James E. Joseph and Myung H. Kwack

Recently, while preparing a lecture on closed functions for a general

topology course, what appear to be new characterizations of such functions

were discovered. The purpose of this note is to present these characteri-

zations. Recall, if X , Y are topological spaces, a function f :X → Y is a

closed function if f(A) is a closed subset of Y whenever A is a closed subset

of X . In the sequel, topological spaces will be referred to as simply spaces.

If A is a subset of a space, cl(A) will denote the closure of A, d(A) will

be the set of limit points of A, and Σ(A) (Σ(x) if A = {x}) will denote

the collection of open subsets which contain A. The following equivalent

statements for spaces X , Y , and f :X → Y appear in a number of books

on general topology [2].

1) The function f is a closed function.

2) The function f satisfies cl(f(A)) ⊂ f(cl(A)) for each A ⊂ X .

3) For each y ∈ Y and W ∈ Σ(f−1(y)), some H ∈ Σ(y)

satisfies f−1(H) ⊂ W .

It is of significant pedagogical value, when beginning the study of closed

functions in elementary general topology courses, to give classes of contin-

uous functions, which have been previously encountered by the students,

which provide examples of closed functions and examples of functions which

are not closed.

Example 1. A complex polynomial is a closed function.

Verification. If the polynomial P is constant, it is a closed function.

If n ≥ 1 and P (z) =
∑n

k=0 akz
n−k is a complex polynomial of degree n,

it is easy to use the inequality |zn − zn0 | ≤ (|z − z0|+ |z0|)n − |z0|n, which

was established in [1], to prove that P is a continuous function. Also,

it is not difficult to see that if |z| is taken arbitrarily large, then |P (z)|

becomes arbitrarily large. Now, let A be a closed subset of the complex

plane and let zn be a sequence in A such that P (zn) → w. Then P (zn)

is a bounded sequence. Hence, zn is a bounded sequence in A. By the

Bolzano-Weierstrass theorem, there is a subsequence, called again zn such

that zn → x, and x ∈ A since A is closed. By the continuity of P , it follows

that P (zn) → P (x) and P (x) = w.

Example 2. A real-valued continuous periodic function with a non-

discrete subset of the reals as its domain is not a closed function.
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Verification. Let f be the function with period p, let x be in the domain

of f , and let xn be a sequence of distinct elements of the domain such that

xn → x. Let A = {xn + np : n = 1, . . . }. Without loss, assume that

f(xn) 6= f(x). Then d(A) = ∅, so A is a closed subset of the reals; and

f(xn+np) = f(xn) → f(x). Hence, f(A) is not a closed subset of the reals.

Example 2 shows that the circular functions are not closed functions.

Now, to the main results of the note.

Theorem 1. Let X , Y be spaces. A function f :X → Y is a closed

function if and only if d(f(A)) ⊂ f(d(A)) for each A ⊂ X .

Proof. If d(f(A)) ⊂ f(d(A)) for each A ⊂ X , and A is a closed subset

of X , then cl(f(A)) = f(A) ∪ d(f(A)) ⊂ f(A) ∪ f(d(A)) ⊂ f(A). For

the converse, let f :X → Y be a closed function and let A ⊂ X . Let y ∈

d(f(A)). Then y ∈ cl(f(A)−{y}) = cl(f(A−f−1(y))) ⊂ f(cl(A−f−1(y))).

Hence, f−1(y) ∩ cl(A − f−1(y)) 6= ∅. Choose x ∈ f−1(y) ∩ cl(A− f−1(y)).

Then x ∈ d(A) and y = f(x) ∈ f(d(A)). The proof is complete.

A space is called Bolzano-Weierstrass if every countably infinite subset

of the space has a limit point. Corollary 1 is a consequence of Theorem 1.

Corollary 1. Let X , Y be spaces with Y Bolzano-Weierstrass, and let

f :X → Y be a closed function with f−1(y) Bolzano-Weierstrass for each

y ∈ Y . Then X is Bolzano-Weierstrass.

Proof. Let A be a countably infinite subset of X . If f(A) is finite,

then A ∩ f−1(y) is infinite for some y ∈ Y . Hence, d(A) 6= ∅. If f(A) is

infinite, then d(f(A)) 6= ∅, so d(A) 6= ∅ follows from Theorem 1. The proof

is complete.

Theorem 2. Let X and Y be spaces. Then g:X → Y is a closed

function if and only if g(X) is closed in Y and g(V )− g(X − V ) is open in

g(X) whenever V is open in X .

Proof. Suppose g:X → Y is a closed function. Clearly, g(X) is closed

in Y and g(V )−g(X−V ) = g(X)−g(X−V ) is open in g(X) when V is open

in X . On the other hand, suppose g(X) is closed in Y , g(V ) − g(X − V )

is open in g(X) when V is open in X , and let C be closed in X . Then

g(C) = g(X) − (g(X − C) − g(C)) is closed in g(X) and hence, closed in

Y . The proof is complete.

Corollary 2. Let X and Y be spaces. Then a surjection g:X → Y is a

closed function if and only if g(V )− g(X − V ) is open in Y whenever V is

open in X .



VOLUME 18, NUMBER 1, 2006 63

Corollary 3. Let X and Y be spaces and let g:X → Y be a contin-

uous closed surjection. Then the topology on Y is {g(V ) − g(X − V ) :

V open in X}.

Proof. Let W be open in Y . Then g−1(W ) is open in X , and

g(g−1(W )) − g(X − g−1(W )) = W . Hence, all open sets in Y are of the

form g(V ) − g(X − V ), V open in X . On the other hand, all sets of the

form g(V )− g(X − V ), V open in X , are open in Y from Corollary 2. The

proof is complete.

Theorem 3. Let X and Y be spaces with X normal and let g:X → Y

be a continous closed surjection. Then Y is normal.

Proof. Let K, M be closed disjoint subsets of Y . Then g−1(K),

g−1(M) are closed disjoint subsets of X . Let V ∈ Σ(g−1(K)), W ∈

Σ(g−1(M)) be disjoint. Then, K ⊂ g(V ) − g(X − V ) and M ⊂ g(W ) −

g(X−W ). Further, by Corollary 2, g(V )−g(X−V ) and g(W )−g(X−W )

are open in Y , and clearly, (g(V )− g(X − V )) ∩ (g(W )− g(X −W )) = ∅.

The proof is complete.
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