REAL COMPACT OPERATORS IN FACTORS OF TYPE I, II, AND III_{λ}, 0 < λ < 1

Abdugafur A. Rakhimov, Alexander A. Katz, and Rashithon Dadakhodjaev

Abstract. In the present paper the real ideals of relatively compact operators of W^* -algebras are considered. Similar to the complex case, a description (up to isomorphism) of the real two-sided ideal of relatively compact operators of the complex W^* -factors is given.

1. Introduction. Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. A weakly closed *-subalgebra Mwith identity element 1 in B(H) is called a W^* -algebra. Let P(M) be the set of all projections of M, I be the ideal of all operators with the finite range projection relative to M, $J = \overline{I}$ be the ideal of compact operators relatively to M. It is known [2], that I and J are proper if and only if Mis infinite; and that J is the maximal two-sided ideal of M without infinite projections. The compact operators relative to M were defined by Sonis [6] (in the case of the algebras with Segal measure, i.e. for finite W^* -algebras) as the operators which are mapping bounded sets into relatively compact sets. In [4], an analogous notion of finiteness and compactness in purely infinite W^* -algebras was introduced and considered.

In the present paper we introduce and consider the ideal of compact operators relative to a real W^* -algebra. In a manner similar to the complex case, a description and classification (up to isomorphism) of the real twosided ideal of the relatively compact operators is given.

2. Preliminary Information. A real *-subalgebra R with 1 in B(H) is called a *real* W^* -algebra if it is closed in the weak operator topology and $R \bigcap iR = \{\mathbf{0}\}$. A real W^* -algebra R is called a *real factor* if its center Z(R) contains only elements of the form $\{\lambda \mathbf{1}\}, \lambda \in \mathbb{R}$. We say that a real W^* -algebra R is of the type $I_{fin}, I_{\infty}, II_1, II_{\infty}, \text{ or } III_{\lambda} \ (0 \le \lambda \le 1)$ if the enveloping W^* -algebra U(R) = R + iR has the corresponding type in the ordinary classification of W^* -algebras [1].

A linear mapping α with $\alpha(x^*)=\alpha(x)^*$ of the algebra R into itself is called

-an *-automorphism if $\alpha(xy) = \alpha(x)\alpha(y);$

-an *-antiautomorphism if $\alpha(xy) = \alpha(y)\alpha(x)$,

-an involutive if $\alpha^2(x) = \alpha(\alpha(x)) = x$, for all $x, y \in R$.

A trace on a (complex or real) W^* -algebra N is a linear function τ on the set N^+ of positive elements of N with values in $[0, +\infty]$, satisfying the following condition:

 $\tau(uxu^*) = \tau(x)$, for an arbitrary unitary u and x in N.

The trace τ is said to be *finite* if $\tau(\mathbf{1}) < +\infty$; *semifinite* if given any $x \in N^+$ there is a nonzero $y \in N^+$, $y \leq x$ with $\tau(y) < +\infty$.

Let $R \subset B(H)$ be a real W^* -algebra, M = R + iR be the *enveloping* W^* -algebra for R. Let τ be a semifinite trace on R. Subspace K of H with $K\eta R$, i.e. $P_K \in R$, is called

-finite relative to τ if $\tau(P_K) < \infty$, where P_K projection of H on K; -compact relative to τ if K is an approximate of the bounded sets from relatively finite subspaces.

Real operator x of H (i.e. $x \in R$) is called *real compact* relative to τ if it is the operator mapping bounded sets into relatively compact sets.

3. Compact Operators in Semifinite Real Factor. Let I(R) be the set of all relatively compact operators of R.

<u>Theorem 1</u>. Let R be a semifinite real factor. Then I(R) is a unique (nonzero) uniformly closed two-sided ideal of R.

<u>Proof.</u> See [5] for details.

<u>Theorem 2</u>. Let R be a semifinite real factor, U = R + iR is its enveloping factor. Let I(U) be a unique (nonzero) uniformly closed two-sided ideal of U. Then

$$I(U) = I(R) + iI(R).$$

<u>Proof.</u> Since I(R) is a uniformly closed two-sided ideal, then I(R) + iI(R) is also a uniformly closed two-sided ideal. In fact, let $\{c_n = a_n + ib_n\}$ be a Cauchy sequence in I(R) + iI(R), i.e. $||c_n - c_m|| \to 0$ as $n, m \to \infty$. Then $||(a_n - a_m) + i(b_n - b_m)|| \to 0$ as $n, m \to \infty$. Using Lemma 1.1.3 (iii) from [1] we have

$$\max\{\|a_n - a_m\|, \|b_n - b_m\|\} \le \|(a_n - a_m) + i(b_n - b_m)\|.$$

Therefore, $||a_n - a_m|| \to 0$ and $||b_n - b_m|| \to 0$ as $n, m \to \infty$. Thus, $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences in I(R). Hence, they converge to a and bin I(R), respectively. Thus, $c_n = a_n + ib_n \to a + ib$ in I(R) + iI(R), which is thus uniformly closed. Now, if $x = a + ib \in U$, $y = c + id \in I(R) + iI(R)$, then $xy = (ac - bd) + i(ad + bc) \in I(R) + iI(R)$. Similarly, $yx \in I(R) + iI(R)$. Therefore, I(R) + iI(R) is a uniformly closed two-sided ideal of U. Thus, we have proved that $I(R) + iI(R) \subset I(U)$. Now, since for $x \in I(U)$ we have $x = a + ib, a, b \in R$, let I(U) = A + iB, for some $A, B \subset R$. But, for $a \in A$, $b \in B$ we have $ab, ba \in I(U)$. Therefore, $ab, ba \in A$, hence, A = B, i.e., I(U) = A + iA. Then $I(R) \subset A$ as $A, I(R) \subset R$. Let $\{a_n\}$ be a Cauchy sequence in $A \subset I(U)$. Since I(U) is uniformly closed, $\{a_n\}$ converges to $a \in I(U)$. But, R is also uniformly closed. Therefore, $a \in R$. Then $a \in A$. Now, let $x \in A, y \in R$. Since I(U) is a two-sided ideal of $U, xy, yx \in I(U)$, i.e. $xy, yx \in A$ as $xy, yx \in R$. Therefore, A is a uniformly closed two-sided ideal of R with $I(R) \subset A$. Then by Theorem 1 we have A = I(R). This completes the proof of the theorem.

4. Real Ideals of Compact Operators of Factors of Type III_{λ}, ($\lambda \neq 1$). Let us recall [3] the notion of the crossed product of a W*-algebra by a locally compact topological group by its *-automorphism. Let N be a (complex or real) W*-algebra in B(H), $\gamma: G \to Aut(M)$ be a group homomorphism such that each map $g \to \gamma_g$ is strongly continuous. Let $L_2(G, H)$ be the Hilbert space of all H-valued square integrable functions on G. We consider a *-algebra $U \subset B(L_2(G, H))$, generated by operators of the form: $\pi_{\gamma}(a)(a \in M)$ and $u(g)(g \in G)$, where

$$\begin{aligned} (\pi_{\gamma}(a)\xi)(h) &= \gamma_h^{-1}(a)\xi(h), \quad (u(g)\xi)(h) = \xi(g^{-1}h), \\ \xi &= \xi(h) \in L_2(G,H), \ g,h \in G. \end{aligned}$$

The algebra U is called *crossed product* of M by G, and denoted by $W^*(M,G)$ (or $M \times_{\gamma} G$). Moreover, there exists a canonical embedding $\pi\gamma: M \to \pi_{\gamma}(M) \subset U$. Each element $x \in U$ has the form: $x = \sum_{g \in G} \pi_{\gamma}(x(g))u(g)$, where $x(\cdot)$ is an M-valued function on G.

Let θ be a *-automorphism of N. For the action $\{\theta^n\}$ of the group Z on N we denoted by $W^*(\theta, N)$, (or $N \times_{\theta} Z$) the crossed product of N by θ . Now, let R be a factor of type III_{λ}, ($\lambda \neq 1$). Then by [7], either

-there exist a real factor F of type II_{∞} and an automorphism θ of F such that R is isomorphic to the crossed product $F \times_{\theta} Z$ or

-there exist a complex factor N of a type II_{∞} and an antiautomorphism σ of N such that R is isomorphic to $((N \oplus N^{op}) \times_{\sigma} Z, \beta)$, where N^{op} is the opposite W^* -algebra for N, $\beta(x, y) = (y, x)$, for all $x, y \in N$.

In the first case, let I(R) be the norm closure of $span\{x \in R^+ \mid E(x) \in I(F)\}$, where $E: R \to F$ is a unique faithful normal conditional expectation.

In the second case, let I(R) be the norm closure of $span\{x \in R^+ \mid E(x) \in I(N \oplus N^{op})\}$, where E is a unique faithful normal conditional expectation from M to $N \oplus N^{op}$.

If we now apply Theorem 1 and use the scheme of proof of Theorem 6.2 from [4], then we prove a real analogue of the theorem of Halpern-Kaftal.

<u>Theorem 3</u>. In each case I(R) is a unique (nonzero) uniformly closed two-sided ideal of R.

Similar to Theorem 2, we can prove the following theorem.

<u>Theorem 4</u>. Let M be an injective factor of type III_{λ}, $0 < \lambda < 1$, R and Q are non-isomorphic real factors with the enveloping factor M, i.e. R + iR = Q + iQ = M. If I(M) is a (nonzero) uniformly closed two-sided ideal of M, then

$$I(M) = I(R) + iI(R)$$
 and $I(M) = I(Q) + iI(Q)$,

where I(R) and I(Q) are non-isomorphic unique uniformly closed two-sided ideals of R and Q, respectively.

5. Main Result. Let M be a factor, α - an involutive *antiautomorphism of M. Then from [1], the set $R = \{x \in M : \alpha(x) = x^*\}$ is a real factor and the enveloping W^* -algebra U(R) of R coincides with M, and conversely, given an arbitrary real factor R there exists a unique involutive *-antiautomorphism α_R of the W^* -algebra U(R) such that $R = \{x \in U(R) : \alpha(x) = x^*\}$. Moreover, R_1 and R_2 are two real *isomorphic factors if and only if the enveloping factors $U(R_1)$ and $U(R_1)$ are *-isomorphic and the involutive *-antiautomorphism α_{R_1} and α_{R_2} are conjugate, i.e. $\alpha_{R_1} = \theta \cdot \alpha_{R_2} \cdot \theta^{-1}$, for some *-automorphism θ .

It is known [1] that

-in factor of type I_n , *n* even, there exists unique conjugacy class on involutive *-antiautomorphism;

-in factor of type I_n , n odd or $n = \infty$, there exist exactly two conjugacy classes on involutive *-antiautomorphism;

-in injective factor of type II_1 there exists unique conjugacy class on involutive *-antiautomorphism;

-in injective factor of type II_{∞} there exists unique conjugacy class on involutive *-antiautomorphism;

-in injective factor of type III_{λ} , $0 < \lambda < 1$, there exist exactly two conjugacy classes on involutive *-antiautomorphism;

-in injective factor of type ${\rm III}_1$ there exists unique conjugacy class on involutive *-antiautomorphism.

Hence, from Theorems 1 and 3 we obtain the following theorem.

<u>Theorem 5.</u> Let M be a factor.

- 1) If M has type I_n , n even, then in M there exist two (nonzero) uniformly closed two-sided real ideals up to isomorphisms;
- 2) If M has type I_n , n odd or $n = \infty$, then in M there exist three (nonzero) uniformly closed two-sided real ideals up to isomorphisms;
- 3) If M is an injective factor of type II₁ or type II_{∞}, then in M there exist two (nonzero) uniformly closed two-sided real ideals up to isomorphisms;
- 4) If M is an injective factor of type III_{λ} ($0 < \lambda < 1$), then in M there exist three (nonzero) uniformly closed two-sided real ideals up to isomorphisms.

References

- S. A. Ayupov, A. A. Rakhimov, and S. M. Usmanov, Jordan, Real and Lie Structures in Operator Algebras, Kluwer Academic Publishers, Dordrecht, MAIA V. 418, 1997.
- M. Breuer, "Fredholm Theories in von Neumann Algebras I," Math. Ann., 178 (1968), 243–254.
- A. Connes, "Une Classification des Facteurs de Type III," Ann. Sc. Ec. Norm. Sup., 6 (1973), 133–252.
- H. Halpern and V. Kaftal, "Compact Operators in Type III_λ and Type III₀ Factors," Math. Ann., 273 (1986), 251–270.
- A. A. Rakhimov, A. A. Katz, and R. Dadakhodjaev, "The Ideal of Compact Operators in Real Factors of Types I and II," (Russian) *Mat. Tr.*, 5 (2002) 129–134.
- M. G. Sonis, "On a Class of Operators in von Neumann Algebras with Segal Measures," *Math. USSR Sb.*, 13 (1971), 344–359.
- 7. P. J. Stacey, "Real Structure in σ -finite Factors of Type III_{λ}, where $0 < \lambda < 1$," *Proc. London Math. Soc.*, 47 (1983), 275–284.

Mathematics Subject Classification (2000): 46L70

Dr. Abdugafur A. Rakhimov Department of Mathematics Karadeniz Technical University Trabzon 61080, Turkey email: rakhimov@ktu.edu.tr

Dr. Alexander A. Katz Department of Mathematics and Computer Science St. John's University 300 Howard Avenue Staten Island, NY 10301 email: katza@stjohns.edu

Dr. Rashithon Dadakhodjaev Department of Mathematics National University of Uzbekistan Vuz Gorodok Tashkent 700000, Uzbekistan email: Rashidhon@yandex.ru