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DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS,

AND QUADRATIC FORMS

Keith Brandt and John Koelzer

1. Introduction. In Mathematical Diversions [4], Hunter and
Madachy ask for the ages of a boy and his mother, given the following:

His mother’s age and his, when multiplied together, come to one more

than the square of their difference.

We used this problem in a contest for our students. While reviewing
the solutions submitted, we discovered some oddities about this question
and its corresponding Diophantine equation. All integer solutions to the
equation, and those of an incorrect formulation of the equation, consist of
Fibonacci numbers. Furthermore, there is an interesting duality between
the solutions to the correct and incorrect formulations.

2. The Equations. Let x and y represent the ages of the boy and
his mother, respectively. The question leads to the equation

xy = 1 + (x− y)2,

which simplifies to
x2 − 3xy + y2 = −1. (1)

One of the solutions submitted had the 1 on the wrong side of the
equation,

xy + 1 = (x− y)2,

which simplifies to
x2 − 3xy + y2 = 1. (2)
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Figure 1. The curves defined by xy = 1 + (x− y)2 (solid) and
xy + 1 = (x− y)2 (dashed).

The substitutions u = 2x− 3y and v = y reduce equations (1) and (2),
respectively, to

u2 − 5v2 = −4 (3)

and
u2 − 5v2 = 4, (4)

which are versions of Pell’s equation [10]. With these substitutions it is
easy to convert between solutions of equations (1) and (2) and solutions of
equations (3) and (4).

3. The Solutions. Write the equation x2+axy+y2 = b as xTAx = b,
where

x

[

x

y

]

and A =

[

1 a

2
a

2
1

]

,

and apply the following theorem.

Theorem 1. Consider the equation xTAx = b, where A is a square
matrix, x is a column vector, and b ∈ R. Suppose P is a matrix with
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integer entries such that PTAP = A. If x is a solution to the equation,
then Px is also a solution. If P has an inverse, then P−1x is also a solution.

Proof. (Px)TA(Px) = xTPTAPx = xTAx = b. If P has an in-
verse, then (P−1)TA (P−1) = A, and it follows that (P−1x)TA(P−1x) =
xT (P−1)TAP−1x = xTAx = b.

The matrix

P =

[

−a −1
1 0

]

satisfies the hypothesis of Theorem 1. Setting a = −3 and b = −1 gives
the equation for the mother-son age problem. Since

[

x

y

]

=

[

1
1

]

is a solution to equation (1), all elements of the set

K+ =

{

xk =

[

xk

yk

]

= P k ·
[

1
1

] ∣

∣

∣

∣

k ∈ Z

}

are solutions to equation (1).
Similarly, there is a set K− of solutions corresponding to the solution

[

x

y

]

=

[

−1
−1

]

.

The sets K+ and K− give solutions on the two branches in quadrants one
and three, respectively, of the hyperbola defined by equation (1). For any
k ∈ Z and xk,xk−1 ∈ K+ (or K−), Theorem 1 yields

xk = Pxk−1. (5)

Note that P is diagonalizable via the similarity transformation P =
QDQ−1, where

D =

[

3−
√

5
2

0

0 3+
√

5
2

]
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and

Q =

[

3−
√

5
2

3+
√

5
2

1 1

]

.

Letting xk ∈ K+ and substituting into the recursive equation (5) above
gives

xk = Pxk−1 = P kx0 = QDkQ−1x0.

Note that if φ is defined to be 1+
√

5
2

(the Golden Ratio), then

φ2 =
3 +

√
5

2
and φ−2 =

3−
√
5

2
.

Substitution of these values into D and Q leads to formulas for xk and yk:

xk =
φ−2k + φ2k+2

1 + φ2

yk =
φ−2k+2 + φ2k

1 + φ2
.

These formulas are related to the sequence of Fibonacci numbers, Fn.
This sequence is defined by F0 = 0, F1 = 1, and Fn = Fn−1+Fn−2 for n ≥ 2.
The definition can be extended to negative integers n by F−n = (−1)n+1Fn.
Binet’s familiar formula [2] for the kth Fibonacci number is

Fk = 1
√

5

(

φk − (−1)kφ−k

)

, k ∈ Z.

Replacing k by 2k + 1 and noting that
φ

1 + φ2
=

1√
5
yields

F2k+1 =
φ

1 + φ2

(

φ2k+1 − (−1)2k+1φ−2k−1

)

=
φ−2k + φ2k+2

1 + φ2

= xk.



VOLUME 18, NUMBER 2, 2006 99

The proof that yk = F2k−1 is similar. Thus, the solutions to equation
(1) include pairs of Fibonacci numbers whose indices run over the odd
integers. In fact, these are all the solutions to the equation.

The matrices

C =

[

2 −3
0 1

]

and C−1 =

[

1
2

3
2

0 1

]

are used to convert between solutions to equations (1) and (3). For example,

[

5
2

]

is a solution to (1), and

[

2 −3
0 1

]

·
[

5
2

]

=

[

4
2

]

,

which is a solution to (3).
Note that solutions to (3) must consist of either two even integers or

two odd integers. Thus, multiplying any solution of (3) by C−1 gives an
integral solution to (1). It follows that there is a one-to-one correspondence
between the solutions to equations (1) and (3).

Standard results on Diophantine equations will now reveal that the set
K = K+ ∪K− contains all solutions to equation (1). First, determine all
solutions to equation (3). To describe these solutions, some new notation
is introduced. If the vector

[

s

t

]

is a solution to an equation of the form u2 − 5v2 = c, this solution can be
conveniently denoted by s+ t

√
5. Now identify the sets

S =

{[

s

t

] ∣

∣

∣

∣

s, t ∈ Z

}

and R =
{

s+ t
√
5 | s, t ∈ Z

}

.
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Note also that the set R is closed under multiplication and is isomorphic
(as a monoid) to the set

M =

{[

s 5t
t s

] ∣

∣

∣

∣

s, t ∈ Z

}

under matrix multiplication. The map M 7→ S, given by

[

s 5t
t s

]

→
[

s 5t
t s

]

·
[

1
0

]

=

[

s

t

]

,

gives a bijection between the elements of M and S.
By [10], all solutions to equation (3) are given by the union W of the

three sets

W1 =
{

±(9 + 4
√
5)k · (−1 +

√
5) | k ∈ Z

}

,

W2 =
{

±(9 + 4
√
5)k · (1 +

√
5) | k ∈ Z

}

,

W3 =
{

±(9 + 4
√
5)k · (4 + 2

√
5) | k ∈ Z

}

.

The sets W1, W2, and W3 are called classes of solutions. The solutions
−1+

√
5, 1+

√
5, and 4+2

√
5 are known as fundamental solutions of their

respective classes, and they are found using certain numerical conditions
[10]. The expression 9 + 4

√
5 is a fundamental solution to the equation

u2 − 5v2 = 1.

Let W+ be the subset of W whose elements begin with “+” in the three
sets above, and let W− be the subset of W whose elements begin with
“−” in the three sets above. Similarly, one may speak of W+

i
and W−

i
for

i = 1, 2, 3.
Recall that multiplication by the matrix C gives a bijection between

the solutions to equations (1) and (3). From this, it follows that the set K
maps onto W . First, it is clear that K+ maps onto W+.

If
[

xk

yk

]

∈ K+,
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then

C ·
[

xk

yk

]

= C · P k ·
[

1
1

]

.

For example,

C ·
[

x3

y3

]

=

[

2 −3
0 1

]

·
[

3 −1
1 0

]3

·
[

1
1

]

=

[

2 −3
0 1

]

·
[

13
5

]

=

[

11
5

]

.

Let k ∈ Z and consider (9 + 4
√
5)k · (−1 +

√
5) ∈ W+

1 . One can now
show that

C ·
[

x3k

y3k

]

= (9 + 4
√
5)k · (−1 +

√
5).

In view of the identifications between the sets S, R, andM described earlier,
the previous equation reduces to the matrix equation

[

2 −3
0 1

]

·
[

3 −1
1 0

]3k

·
[

1
1

]

=

[

9 20
4 9

]k

·
[

−1 5
1 −1

]

·
[

1
0

]

,

which can be proved using mathematical induction. Similarly, there is a
one-to-one correspondence between the solutions

[

x3k+1

y3k+1

]

and W+
2 and between the solutions

[

x3k+2

y3k+2

]

and W+
3 . Thus, there is a one-to-one correspondence between K+ and W+.

There is also a one-to-one correspondence between K− and W−. The main
result of this paper is now established.

Theorem 2. The set K consists of all solutions to equation (1).
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Similarly, all solutions to equation (2), the incorrect formulation of the
mother-son problem, satisfy

[

xk

yk

]

=

[

F2k

F2k−2

]

.

To summarize, the solutions to equation (1) consist of Fibonacci num-
bers with consecutive odd indices, whereas the solutions to equation (2)
consist of Fibonacci numbers with consecutive even indices. Hence, the co-
ordinates of the integral points on the curves in Figure 1 are all Fibonacci
numbers. Also, for all k ∈ Z, the identity

F 2
k − 3FkFk−2 + F 2

k−2 = (−1)k

follows immediately from the above results.

4. Further Comments and Observations. Connections between
Diophantine equations (and their corresponding curves) and sequences de-
fined by linear recurrences (such as the Fibonacci numbers) have been stud-
ied for many years. In the late 1800’s, Lucas showed that if x and y are
consecutive Fibonnaci numbers, then the point (x, y) lies on one of the hy-
perbolas y2 − xy− x2 = ±1, and Wasteels proved the converse in 1902 (for
proofs of both results see Wasteels [11]). Lucas [7] also noted some con-
nections between the Fibonacci numbers, Lucas numbers, and Pell’s equa-
tion. (Lucas numbers, denoted by Ln, are defined by L0 = 2, L1 = 1, and
Ln+2 = Ln+1+Ln.) In the above paper, Lucas showed that L2

n−5F 2
n = ±4.

More recently, Long and Jordan [6] proved the following: If (x, y) is a solu-
tion to x2 − 5y2 = 4, then x = L2n and y = F2n. Correspondingly, if (x, y)
is a solution to x2 − 5y2 = −4, then x = L2n−1 and y = F2n−1.

Bergum [1] and Horadam [3] identified some conic curves that pass
through infinitely many points whose coordinates are Fibonacci numbers.
Kimberling [5] then classified all hyperbolas with this property. He defined
two classes of hyperbolas (here n is a positive integer):

pn(x, y) = x2 + (−1)n+1Lnxy + (−1)ny2 + F 2
n and

qn(x, y) = x2 + (−1)n+1Lnxy + (−1)ny2 − F 2
n .

He named these curves “Fibonacci hyperbolas” because they have the
property that they pass through an infinite number of points of the form
(Fm, Fn), and he proved that these are the only hyperbolas with this prop-
erty. Kimberling did not prove, however, that all the integer points through
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which these hyperbolas pass are pairs of Fibonacci numbers. We have been
able to do this in the special cases of the two Fibonacci hyperbolas in-
volved in the correct and incorrect solutions to the mother-son age problem.
It is our conjecture that all the lattice points of Kimberling’s hyperbolas
pn(x, y) and qn(x, y) are pairs of Fibonacci numbers.

More can be said about integer solutions in the general setting. It can
be shown that, if n is even, then (1, Fn−1) is a solution to the equation

pn(x, y) = x2 − Lnxy + y2 + F 2
n = 0.

In addition, this Diophantine equation can be written in quadratic form as
xTAx = −F 2

n , where

x =

[

x

y

]

and A =

[

1 −Ln

2
−Ln

2
1

]

.

The matrix

P =

[

−Ln −1
1 0

]

satisfies the hypothesis of Theorem 1, and if

x0 =

[

1
Fn−1

]

,

then the set {P kx0 | k ∈ Z} consists of solutions to the equation.
McDaniel [8] identified some conics whose equations are satisfied by

consecutive terms of certain recursively defined sequences. His Theorem
2 is a generalization of our solution to equation (2). Later, Melham [9]
generalized some of McDaniel’s theorems.

The proof of Theorem 1 yields no insight into how the matrix

P =

[

3 −1
1 0

]

is constructed from

A =

[

1 − 3
2

− 3
2

1

]
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in order to satisfy the condition PTAP = A. There are other candidates
for P , such as

[

0 1
−1 3

]

,

that would work equally well for generating all solutions to the Diophantine
equation for the mother-son age problem. Also, there are many matrices
that do not generate an infinite number of solutions. It is also possible
to find matrices that generate an infinite number of solutions, but not all

solutions; P 2 would be an example of such a matrix.
The matrix P that was used to obtain solutions to equation (1) was

found by setting P equal to

[

s t

1 0

]

and solving the equation PTAP = A for s and t. This yielded two solutions:
the matrix used to generate all solutions, and

P =

[

0 1
1 0

]

.

Since P 2 = I, this matrix does not generate an infinite number of solutions.
The next theorem, whose proof is straightforward, puts some structure on
the set of matrices P that satisfy Theorem 1.

Theorem 3. Let A be an invertible matrix in Mn(R), the set of all
n×n matrices over R. Define GA = {P ∈ Mn(R) | PTAP = A}. Then GA

forms a group under the operation of matrix multiplication.

Other authors have used the identification of expressions of the form
s+ t

√
d with matrices of the form

[

s dt

t s

]

in problems similar to ours. See, for example, Wegener [12].
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