THE FUNDAMENTAL THEOREM OF ALGEBRA PROOFS VIA "THE CREEPING LEMMA"

James E. Joseph and Myung H. Kwack

Let \mathbb{C} be the complex plane. A complex polynomial function is a function $P: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
P(z)=\sum_{k=0}^{n} a_{n-k} z^{n-k}
$$

where $a_{0}, \cdots, a_{n} \in \mathbb{C}$. The Fundamental Theorem of Algebra states that a nonconstant complex polynomial function has a zero. Over the years, a number of proofs of this theorem have been discovered [1]. In this note, the so-called "Creeping Lemma" [3] is used to present two elementary proofs of the Fundamental Theorem. The proofs can be presented in a first analysis course (or advanced calculus course) as a nice application of diffeomorphism and the concept of least upper bound.

It is known that a complex polynomial function P is a closed function, i.e. that $P(A)$ is a closed subset of \mathbb{C} when A is a closed subset of \mathbb{C}. The proof for non-constant P combines the Bolzano-Weierstrass property of \mathbb{C} with the continuity of P and the observation that $|P(z)|$ gets arbitrarily large as $|z|$ gets arbitrarily large [2].

Here the "Creeping Lemma" is applied
(i) to provide a direct proof of The Fundamental Theorem of Algebra, and
(ii) to prove that a non-constant complex polynomial function is an open function, so $P(\mathbb{C})=\mathbb{C}$, since $P(\mathbb{C})$ is a nonempty, closed, and open subset of the connected space \mathbb{C} (another proof of the Fundamental Theorem of Algebra).

In the sequel, the set of critical points of a complex polynomial P, $\left\{z \in \mathbb{C}: P^{\prime}(z)=0\right\}$, will be denoted by M.

Theorem 1. The Fundamental Theorem of Algebra: A non-constant complex polynomial function has a zero.

Proof. The set of critical points, M and its image $P(M)$ are both finite. Let $p=P(a)$ with $a \notin M$. Let $\sigma:[0,1] \rightarrow \mathbb{C}$ be a curve such that $\sigma(0)=p, \sigma(1)=O$, and $\sigma([0,1)) \subset \mathbb{C}-P(M)$, an open connected set. It will be enough to show that there is a curve $\tilde{\sigma}:[0,1] \rightarrow \mathbb{C}$ with $\tilde{\sigma}(0)=a$ and $P \circ \tilde{\sigma}=\sigma$.

Choose a neighborhood U of a such that $P: U \rightarrow P(U)$ is a diffeomorphism with inverse g. Then, $\tilde{\sigma}=g \circ \sigma$ is defined
on $[0, t]$ for some $t \in(0,1]$. Let $c=\sup \{r \in(0,1]$: $\tilde{\sigma} \quad$ can be extended to a curve from $[0, r]$ into \mathbb{C} such that $\tilde{\sigma}(0)=$ $a, \quad P \circ \tilde{\sigma}=\sigma\}$. Since $\sigma(c)=\lim P \circ \tilde{\sigma}\left(s_{k}\right)$ for a sequence $s_{k} \rightarrow c$ and P is a closed function, it may be assumed, without loss of generality, that $\tilde{\sigma}\left(s_{k}\right) \rightarrow b \in \mathbb{C}$ and $P(b)=\sigma(c)$. Suppose $c<1$. Then, $P^{\prime}(b) \neq 0$ and the point b has a neighborhood V such that $P: V \rightarrow P(V)$ is a diffeomorphism with inverse g_{b}. The curve $g_{b} \circ \sigma$ is defined on $(c-\epsilon, c+\epsilon) \subset(0,1)$ for some $\epsilon>0$ and ultimately $g_{b} \circ \sigma\left(s_{k}\right)=\tilde{\sigma}\left(s_{k}\right)$. Note that any curve $\alpha:(c-\epsilon, c) \rightarrow \mathbb{C}$ with $\alpha((c-\epsilon, c)) \cap V \neq \emptyset$ is uniquely determined from the condition $P \circ \alpha=\sigma$ by $\alpha=g_{b} \circ \sigma$. It follows that $\tilde{\sigma}$ can be extended to a curve from $[0, c+\epsilon / 2]$, which is a contradiction. Hence, $c=1$ and $P(b)=\sigma(1)=O$. The proof is complete.

Remark. At a non-critical point z of a polynomial P, the Inverse Function Theorem guarantees that there is an arbitrarily small open neighborhood of z whose image is a neighborhood of $P(z)$. A slight modification of the above proof establishes that at a critical point z of P, there is also an arbitrarily small open neighborhood of z whose image is a neighborhood of $P(z)$. Theorem 2 follows from these observations, and establishes that, for non-constant $P, P(V)$ is an open subset of \mathbb{C} for each open $V \subset \mathbb{C}$, not only for $V=\mathbb{C}$.

Theorem 2. A nonconstant complex polynomial function P is an open function.

Proof. Let $V \subset \mathbb{C}$ be open and let $a \in V$. If $P^{\prime}(a) \neq 0, P$ is a diffeomorphism on an open neighborhood $U \subset V$ of a and $P(V)$ contains an open neighborhood $P(U)$ of $P(a)$. Suppose $P^{\prime}(a)=0$. Choose a disk $D_{s}(a) \subset V$ with $P^{-1}(P(a)) \cap \bar{D}_{s}(a)=\{a\}$ and $D_{s}^{*}(a) \subset \mathbb{C}-M$, where $D_{s}(p)=\{q \in \mathbb{C}:|p-q|<s\}, D_{s}^{*}(p)=D_{s}(p)-\{p\}$. Choose a number $r>0$ satisfying the properties
(i) $2 r$ is smaller than the distance from $P(a)$ to $P\left(\partial D_{s}(a)\right.$), where $\partial D_{s}(a)$ is the boundary of $D_{s}(a)$, and
(ii) $D_{r}^{*}(P(a)) \subset \mathbb{C}-P(M)$.

Since P is not constant, choose a point $b \in D_{s}(a)$ such that $P(b) \in$ $D_{r}^{*}(P(a))$. Let $q \in D_{r}^{*}(P(a))$ and let $\sigma:[0,1] \rightarrow D_{r}^{*}(P(a))$ be a curve with $\sigma(0)=P(b)$ and $\sigma(1)=q$. As in the proof of Theorem 1, there is a curve $\tilde{\sigma}:[0,1] \rightarrow \mathbb{C}$ determined by the conditions $\tilde{\sigma}(0)=b$ and $P \circ \tilde{\sigma}=\sigma$. However, $\tilde{\sigma}([0,1]) \subset D_{s}(a)$, since $b \in \tilde{\sigma}([0,1]) \cap D_{s}(a)$, and $\sigma([0,1]) \cap P\left(\partial D_{s}(a)\right)=\emptyset$ implies $\tilde{\sigma}([0,1]) \cap \partial D_{s}(a)=\emptyset$. It follows that $q=P \circ \tilde{\sigma}(1) \in P\left(D_{s}(a)\right)$ and thus, $D_{r}(P(a)) \subset P\left(D_{s}(a)\right)$. The proof is complete.

References

1. A. Sen, "Fundamental Theorem of Algebra - Yet Another Proof," American Mathematical Monthly, 107 (2000), 842-843.
2. J. E. Joseph and M. H. Kwack, "A Note On Closed Functions," Missouri Journal of Mathematical Sciences, 18 (2006), 61-63.
3. R. M. F. Moss and G. T. Roberts, "A Creeping Lemma," American Mathematical Monthly, 75 (1968), 649-652.

Mathematics Subject Classification (2000): 30C10, 30C15, 57R50
James E. Joseph
Department of Mathematics
Howard University
Washington, D. C. 20059
email: jjoseph@howard.edu
Myung H. Kwack
Department of Mathematics
Howard University
Washington, D. C. 20059
email: mkwack@howard.edu

