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THE FUNDAMENTAL THEOREM OF ALGEBRA –

PROOFS VIA “THE CREEPING LEMMA”

James E. Joseph and Myung H. Kwack

Let C be the complex plane. A complex polynomial function is a
function P :C → C defined by

P (z) =

n∑

k=0

an−kz
n−k,

where a0, · · · , an ∈ C. The Fundamental Theorem of Algebra states that
a nonconstant complex polynomial function has a zero. Over the years, a
number of proofs of this theorem have been discovered [1]. In this note, the
so-called “Creeping Lemma” [3] is used to present two elementary proofs of
the Fundamental Theorem. The proofs can be presented in a first analysis
course (or advanced calculus course) as a nice application of diffeomorphism
and the concept of least upper bound.

It is known that a complex polynomial function P is a closed function,
i.e. that P (A) is a closed subset of C when A is a closed subset of C. The
proof for non-constant P combines the Bolzano-Weierstrass property of C
with the continuity of P and the observation that |P (z)| gets arbitrarily
large as |z| gets arbitrarily large [2].

Here the “Creeping Lemma” is applied

(i) to provide a direct proof of The Fundamental Theorem of Algebra, and
(ii) to prove that a non-constant complex polynomial function is an open

function, so P (C) = C, since P (C) is a nonempty, closed, and open
subset of the connected space C (another proof of the Fundamental
Theorem of Algebra).

In the sequel, the set of critical points of a complex polynomial P ,
{z ∈ C : P ′(z) = 0}, will be denoted by M .

Theorem 1. The Fundamental Theorem of Algebra: A non-constant
complex polynomial function has a zero.

Proof. The set of critical points, M and its image P (M) are both
finite. Let p = P (a) with a 6∈ M . Let σ: [0, 1] → C be a curve such that
σ(0) = p, σ(1) = O, and σ([0, 1)) ⊂ C − P (M), an open connected set. It
will be enough to show that there is a curve σ̃: [0, 1] → C with σ̃(0) = a
and P ◦ σ̃ = σ.

Choose a neighborhood U of a such that P :U → P (U) is
a diffeomorphism with inverse g. Then, σ̃ = g ◦ σ is defined



VOLUME 18, NUMBER 2, 2006 119

on [0, t] for some t ∈ (0, 1]. Let c = sup{r ∈ (0, 1] :
σ̃ can be extended to a curve from [0, r] into C such that σ̃(0) =
a, P ◦ σ̃ = σ}. Since σ(c) = limP ◦ σ̃(sk) for a sequence sk → c and
P is a closed function, it may be assumed, without loss of generality, that
σ̃(sk) → b ∈ C and P (b) = σ(c). Suppose c < 1. Then, P ′(b) 6= 0 and
the point b has a neighborhood V such that P :V → P (V ) is a diffeomor-
phism with inverse gb. The curve gb ◦ σ is defined on (c− ǫ, c+ ǫ) ⊂ (0, 1)
for some ǫ > 0 and ultimately gb ◦ σ(sk) = σ̃(sk). Note that any curve
α: (c − ǫ, c) → C with α((c − ǫ, c)) ∩ V 6= ∅ is uniquely determined from
the condition P ◦ α = σ by α = gb ◦ σ. It follows that σ̃ can be extended
to a curve from [0, c + ǫ/2], which is a contradiction. Hence, c = 1 and
P (b) = σ(1) = O. The proof is complete.

Remark. At a non-critical point z of a polynomial P , the Inverse
Function Theorem guarantees that there is an arbitrarily small open neigh-
borhood of z whose image is a neighborhood of P (z). A slight modification
of the above proof establishes that at a critical point z of P , there is also
an arbitrarily small open neighborhood of z whose image is a neighborhood
of P (z). Theorem 2 follows from these observations, and establishes that,
for non-constant P , P (V ) is an open subset of C for each open V ⊂ C, not
only for V = C.

Theorem 2. A nonconstant complex polynomial function P is an open
function.

Proof. Let V ⊂ C be open and let a ∈ V . If P ′(a) 6= 0, P is a
diffeomorphism on an open neighborhood U ⊂ V of a and P (V ) contains
an open neighborhood P (U) of P (a). Suppose P ′(a) = 0. Choose a disk
Ds(a) ⊂ V with P−1(P (a)) ∩ Ds(a) = {a} and D∗

s
(a) ⊂ C − M , where

Ds(p) = {q ∈ C : |p − q| < s}, D∗

s(p) = Ds(p) − {p}. Choose a number
r > 0 satisfying the properties

(i) 2r is smaller than the distance from P (a) to P (∂Ds(a)), where ∂Ds(a)
is the boundary of Ds(a), and

(ii) D∗

r
(P (a)) ⊂ C− P (M).

Since P is not constant, choose a point b ∈ Ds(a) such that P (b) ∈
D∗

r
(P (a)). Let q ∈ D∗

r
(P (a)) and let σ: [0, 1] → D∗

r
(P (a)) be a curve with

σ(0) = P (b) and σ(1) = q. As in the proof of Theorem 1, there is a curve
σ̃: [0, 1] → C determined by the conditions σ̃(0) = b and P ◦σ̃ = σ. However,
σ̃([0, 1]) ⊂ Ds(a), since b ∈ σ̃([0, 1])∩Ds(a), and σ([0, 1]) ∩ P (∂Ds(a)) = ∅
implies σ̃([0, 1])∩ ∂Ds(a) = ∅. It follows that q = P ◦ σ̃(1) ∈ P (Ds(a)) and
thus, Dr(P (a)) ⊂ P (Ds(a)). The proof is complete.
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