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ABSOLUTE EXTREMA AND THE

BAIRE CATEGORY THEOREM

Kelly Jeanne Pearson and Tan Zhang

Abstract. This note ties together optimization problems from differ-
ential calculus, the Cantor function, and the Baire Category Theorem.

1. Introduction. A common misconception is that mathematics
is a dry, algorithmic subject. Too often, we support this misconception
in our teaching habits by providing step by step procedures which apply
to typical examples of polynomial, rational, and trigonometric functions
without demonstrating interesting (or pathological!) examples where our
step by step procedures prove unhelpful. Mathematical beauty lies not
only in our ability to develop and implement logical procedures but also in
examples which test our grasp on concepts.

This note begins with a standard calculus theorem which outlines a
method for finding extreme values. All too often, students are left with
the impression this procedure always works or that it fails only in a rare
example. Hoping to dispell this impression, we discuss classes of examples
where this method is useless.

Throughout our discussions in this paper, all functions are assumed to
be real-valued. A standard theorem in calculus courses (see [3] for example)
is given by

Theorem 1.1. If f is a continuous function defined on a closed and
bounded interval I, then f attains both its absolute maximum and absolute
minimum values on I.

Finding these extrema points is central while studying optimization.
The procedure generally given (see [3] for example) is outlined as follows:

Procedure 1.2 (The Closed Interval Method). If f is a continuous
function defined on a closed and bounded interval I = [a, b], then

Step 1. Find all critical numbers of f on I. That is, find any c ∈ I so
that f ′(c) = 0 or f ′(c) fails to exist.
Step 2. Compute f(c) for all critical numbers c and compute f(a) and
f(b).
Step 3. Compare the values in step 2 to determine the absolute maxi-
mum and the absolute minimum.

A function with infinitely many critical numbers causes one to think
about the definition of absolute extrema as opposed to Procedure 1.2. A
typical example illustrating this phenomenon is given by the sine function
defined on the real line instead of a closed and bounded interval. Here,
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one is able to use a modified version of Procedure 1.2 with infinitely many
critical numbers due to the periodicity of the sine function.

As another example where Procedure 1.2 fails to be useful, we consider
the following.

Example 1.3. Let f(x) be defined on [0, 1] as follows:

f(x) =

{

x| sin(1/x)|, if 0 < x ≤ 1;

0, if x = 0.

Since f is continuous, we could try to apply Procedure 1.2. How-
ever, we obtain a subset of critical numbers given by c ∈ (0, 1) whenever
tan(1/c) = 1/c. There are infinitely many solutions to this equation. Not
only would one need to solve this equation but plugging in infinitely many
values for comparison hardly seems feasible.

At this point, the definition of absolute extrema is of more importance
than Procedure 1.2. Recalling the graph of f , we immediately see the
absolute maximum of f occurring at x = 1 and the absolute minimum of f
occurring at infinitely many points x = 0, 1/(kπ) for k a positive integer.

This example clearly demonstrates the limited usefulness of Procedure
1.2 while exhibiting the depth of Theorem 1.1. This paper addresses the
issue as to whether there is a class of functions upon which Procedure 1.2
is useless.

2. Monotone Continuous Functions. In this section, we consider
MC[a, b], the collection of all monotone continuous functions defined on a
closed interval [a, b]. For f ∈ MC[a, b], we apply Theorem 1.1 to see that
the extreme values are attained. Furthermore, we use the monotonicity of
f to see that the extreme values are achieved at the endpoints. This direct
approach is much more efficient than Procedure 1.2. In fact, under many
circumstances, if one chooses to ignore the monotonicity of the function, but
instead only relies on Procedure 1.2, finding the extrema of such functions
can be an impossible task to complete.

The following is a well-known result of Lebesgue, see [2] for proof.

Theorem 2.1. If f is a monotone function on the interval [a, b], then f
is differentiable almost everywhere on [a, b].

As an example of a monotone function, we remind the reader of the
famous Cantor function covered in an undergraduate analysis/topology
course. We briefly describe the construction of the Cantor function Θ(x)
in the following example, and we refer to [2] for more details.

Example 2.2. Let x ∈ [0, 1] with the ternary expansion 〈an〉. Let
N := ∞ if none of the an are 1, otherwise we define N to be the smallest
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value of n such that an = 1. Let bn := 1/(2an) for n < N and bN := 1.
Then the function

Θ(x) :=

N
∑

n=1

bn
2n

is a continuous nondecreasing function on the interval [0, 1].

We now apply Theorem 2.1 to see that Θ′(x) = 0 almost everywhere
in the interval [0, 1]. Thus, almost all points in [0, 1] are critical numbers
by definition. Consequently, this will make Step 2 and Step 3 in Procedure
1.2 impossible to accomplish by any human or computer efforts.

3. Everywhere Continuous But Nowhere Differentiable Func-

tions. Having seen a function with a list of countably many critical values
(Example 1.3) and then a Cantor function (Example 2.2) with almost all of
its domain being critical values, the next question should be: Is it possible
to have the set of critical values equal to the domain?

In 1872, but not published until 1875, Weierstrass constructed the
following everywhere continuous but nowhere differentiable function on the
interval [0, 1]:

Example 3.1. For x ∈ [0, 1], let

W (x) :=

∞
∑

n=1

1

2n
cos(3nx).

By Theorem 1.1,W (x) will attain its extreme values on [0, 1]. However,
since W (x) is nowhere differentiable, the set of critical numbers of f will
be the entire interval [0, 1]. Thus again, Steps 2 and 3 in Procedure 1.2 will
be useless.

Finally, it is worthy to point out the relevance of this example in real
analysis and topology. We remind our readers of the Baire Category The-
orem.

Theorem 3.2. No nonempty open subset of a complete metric space is
of first category; i.e., the countable union of nowhere dense subsets. More
generally, a space X is Baire if and only if every nonempty open subset of
X is of second category; i.e., it is not of first category.

The following is now a standard application of the Baire Category
Theorem in many real analysis and topology textbooks, for example in [1,
2].
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Proposition 3.3. In C[a, b], the space of all continuous functions defined
on the closed interval [a, b], the set of everywhere continuous but nowhere
differentiable functions on [a, b] is of second category.

Hence, as suggested by Example 3.1, Procedure 1.2 will be completely
useless on a space of second category.

References

1. J. Munkres, Topology, A First Course, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1975.

2. H. Royden, Real Analysis, 3rd edition, Macmillan, New York, 1988.

3. J. Stewart. Calculus - Early Transcendentals, 4th edition, Brooks/Cole,
Belmont, CA, 1999.

Mathematics Subject Classification (2000): 97D40, 00A05

Kelly Jeanne Pearson
Mathematics Department
Murray State University
Murray, KY 42071-3314
email: kelly.pearson@murraystate.edu

Tan Zhang
Mathematics Department
Murray State University
Murray, KY 42071-3314
email: tan.zhang@murraystate.edu


