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ASYMPTOTICS ANALYSIS OF SOME BOUNDED SOLUTION
TO THE GENERAL THIRD PAINLEVE EQUATION

Hui-zeng Qin and Ni-na Shang

Abstract. In this paper, we study the general third Painlevé equation
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where «, (3, v, and § are real parameters, discuss the boundedness of some
solutions when v < 0 and ¢ > 0, and find an asymptotic representation of
a group of oscillating solutions.

1. Introduction. In [1, 2, 3|, some asymptotic representations and
the corresponding connection formulas of the third Painlevé equations were
studied. Using numerical methods, we found that the general solutions of
the Painlevé equations having the form:

y~ |zl (A+ Bz|" cosg),

as x — Foo. For the third and the fourth general Painlevé equations, we
found some relationships between v, 7, ¢, A, B and the parameters a, [3,
v, 0 in [4, 5]. In this paper, we discuss the conditions for the general third
Painlevé equations to have bounded solutions and obtain some asymptotic
representations of these solutions.

From this point on, we assume that xy # 0 and yg are real constants
and the solution y of the third Painlevé equation

y/Q y/ 1 6
y'=" ==t —(ay’ + B) + oy’ + - (1)
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satisfies y(xo) = yo.

Theorem 1. When § > 0, v < 0, and z — +o00, the Painlevé equation
(1) has a solution with the following asymptotic representation:

1) i a 1
y = Sgn(yo)<—) + T || 2 cos ¢
- 2(—)2

b _ _3
= 2|7 cos® ¢+ O(|z| %), (2)

t =7
A=) s
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where
1 1 a2 b2 b2
= =1 — — ——c—i———il)lnx
¢ (=19) 16(—76)%(2 a?  4a?(—y8)* .
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2. The Proof of the Theorem.

Lemma 2. If § > 0 and v < 0, and y is a solution of (1) satisfying
y(xo) = yo # 0, then yyo > 0 for all || > |zo].

Proof. If y(z1) = 0 for some z; with |x1| > |zo|, then due to its
analyticity, we can substitute the expansion

y(@) = Cla— o) + O((x — 21)™1), € £0, 0> 1 (3)
into equation (1) and obtain
Cn(n—1)(z —21)" "2 + O((x — 21)" ") (4)

= Cn®(x—x)" 2 + g + é(:10 —21) "+ O((x —x)" ).

Q

Thus, n = 1 and C' + % = 0. This contradicts the condition § > 0 and
proves the lemma.

Lemma 3. If § > 0, v < 0, and y is a solution of equation (1) satisfying
y(zo) = yo # 0, then there exist constants m and M such that 0 < m < M
and m < y(z) < M for all |z| > |zg|-
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Proof. Without loss of generality, we assume that x > xg > 0. We
rewrite equation (1) as

/' AN 2 2 9
(Y + y2 —“|la+ % y/ — 2’yyy/ — 25y73y/ =0. (5)
Y Yy Ty z Y

Integrating (5), we get
/\ 2 x 12 x
2 2 )
<y—) +2/ yzdx——<ay—é>—/ 2(y—é)dzzr—”yy +—
Yy zo LY € Y zo T Y y?

2
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Noticing that

2

-] <2 vl 2 Y

it follows from (6) that

7\ 2 z 2
-1 —7y2+£ < (¥ +2/ Yz + -1 —7y2+i
z y? y 0 TY? z y?
| , 6
S/%;<—vy +?>+C, (7)

where

Let
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Then,
1 0
I'= 2 (—7y2 + E) (8)
1 1
< 1= =) —y2+ 2
< (1-3) ()
< I
~xz(x—1)
Clearly,
I< C(x— 1z <c
x(xg — 1)
Therefore,
) Cr
N < 0
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and
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ooy — 0
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Lemma 4. If § > 0, v < 0, and y is a solution of equation (1) satisfying

y(zo) = yo # 0, then
40 1
y = sgn(yo) = + o 2w (9)
Proof. Without loss of generality, we assume that > 0 and y > 0.

<5>% - )
y=|— +x 2w =e".
-

and w is bounded.

Let
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Then,

and

1
y' = (i)4€w%u<§x_%“—x_%u'+x_%u”>
- 4
1) T 1 4 2
+<—) 6m 2u(——x_§u+x— ul)
- 2

into equation (1), we obtain the equation

=

1 1
1 6 \* 1 5\ % 1
u”—i—zx_zu: a(—) 2z 2”—|—ﬁ(—> r"Ze T 2u (10)
-

1 e 1 n+t
u’ +4(—vd)Tu = a<—) Z—gf%u” (11)
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Multiplying both sides of (11) by 2u’ and integrating it from z( to x, we
obtain

u? 4 4(—0) 7 u? (12)

_n+1 [o'e) n+3

_ 0 i - roz n+1 ‘T 2 n+1
= C+2a(_—7) ;(TH—U!U —l—a( ) Z/m dx

+p i o i /z %uwrldx — 1:1072112 — l/z z 3w dx

2 0
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2n+2 75 Z 2n+2d17,
(2n + 2) 20 C(2n+1)

m|»—A

n=1

where C is a constant in terms of xg, yo, and y'(xg). It is clear that the
last four terms in equation (12) are all less than zero. Hence,

/ 72" Uiy
—l—ﬁ(i) (6_15“—1)—ﬁ<i> / 2 3¢ Fudy + C

0

-

-

u'? + 4(—75)%u2 < 2a(i> ' (617%” —-1)+ a<i>

§|a|/ :v_%|u|ydx+|6|/ o4 uly~tdz + O
xo Zo

gcg/ v ulde + Ch. (13)
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Ing/ 277 |uldx + Cy.
Zo

Then,

1

I'=27% |u| < Csa 313,
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Integrating it, we get

=

1
I SCg(JJOQ —,T_%)-"-CQ.
Hence, u and v’ are bounded, and therefore w is bounded.

Now, we continue the proof of our main theorem. We first rewrite our
equation (12) as

u? 4 4(—78)u? = a® + 2 Hu+ Oz ™Y, (14)
or
1 1 2 1
=— — Zbrru+ 0! 15
w2+4(_”¥5)%u2 a2 ar ut 0™, =
where
AR
C =a® and bza(—) +5(_) :
—n —
Clearly,

lim [u/2 +4(—yd)7u?] =C

T—r+00

and the major part of the function u should be of the form p(x) cos ¢. Now
we can let

u = p(x) cos p,
u = 2(—”y5)%p(:17) sin ¢.

To find the expression of ¢, we first get its derivative:

” o 2,2
uu + 4(—v0)zu . (16)

! — —92(—~§ i
¢ = —2(—0)% + 2(—y0) [ + 4(—70) T u?]

From equation (11), we can get

uu” + 4(—75)%u2 =br 2u+ cxu? — g(—”y5)%x71u4 + O(:z:fg), (17)
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o) ()

We substitute (15) and (17) into equation (16) to get

where

1 1 b 1 C 2b2
dp = — 2(—~8)ide + — |~z 2 — )z W2
¢ =2t st e (-5 ) 09

_8(=9)2

3.2 TR O(x_%)] dx,
a

and

1
2(=~96)

dr =

sl

_%u z! .
[1 + 4a2(_75)% x + O( )} do (19)

Again, we substitute (19) back into (18) to get

dp = — 2(—~8)Fdx — #[

c 2b2 b? 19
-G ——g ot
a? al " dat(—40)2

- 78(_75)5 zut + O(x_%)] de.

u (20)

3a?
From (14), we also can get

u:m 1+§x%u+0(x1)] Cos ¢ (21)

a b
=——FcCcosp+ ——
4(—~6)?

- x7%c052¢+0(x71).
2(=70)%
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Substituting (21) back into (20) again, we get

1 [ b
4(—75)% 2&(—75)%

2 2
+ %(c— b—2 + bil)xlc052¢
4(—v6)2 a®  a*(—70)2

X

=

dp = — 2(—8)idx —

cos ¢ (22)

CL2

- Wﬂfl cos* ¢ + O(x%)} do.

N|=

Noticing the significant contribution of the terms with even power of cos ¢,
we rewrite (22) as

2 2 2
d = — 2(—y8)Tdz — 1 (a b b

— = - " dx
16(—0)3 >%> @)

e+ ——7
2 a>  4a2(—vs

— Lx_% cos ¢pd¢ + Lx_l (cos4 —§>d¢
8a(—v6) 24(=9) 8

e

_ 1 (c_ﬁ_FL)x_l <COSQ¢—l)d¢+O(UC—%)d¢-
16(—0) a® | da2(—0)3 2

Now, integrating (23), we obtain the asymptotic expression of the function

¢:

¢ =—2(—0)iz
2 2 2
—%(a— c+b—2—b71) hm:—l—O(a?*%).
16(—yd)x \ 2 a®  4a2(—v0)2

Using the expression
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we finish the proof of the theorem.
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