THE NUMBER OF ADMISSIBLE SEQUENCES FOR INDECOMPOSABLE SERIAL RINGS

Joshua O. Hanes and Darren D. Wick

Abstract. We give a formula for the number of admissible sequences for indecomposable serial rings with n indecomposable projective modules whose minimum composition length is less than or equal to m. In particular, if n = m is prime, we show that the number of such admissible sequences is

$$\binom{2n-1}{n} + \frac{1}{n} \left[(n-1)^2 - \binom{2n-2}{n} \right].$$

1. Introduction. To each indecomposable serial ring (with unity) R there is associated a set $\{e_1, \dots, e_n\}$ of basic primitive idempotents and a set $\{Re_1, Re_2, \dots, Re_n\}$ of pairwise non-isomorphic indecomposable projective left R-modules, each having a unique composition series. Denoting the composition lengths of Re_i by $c_i = c(Re_i)$, then the sequence c_1, c_2, \dots, c_n is called an *admissible sequence* for R, and satisfies the following inequalities [1]:

$$2 \le c_l \le c_{l-1} + 1$$
 for $l = 2, \cdots, n.$ (1.1)

$$c_1 \le c_n + 1. \tag{1.2}$$

The admissible sequence for a serial ring is unique, except for cyclic permutation of the indices. We have shown that if R has a simple projective module, then the number of possible admissible sequences of length n is b_{n-1} , the $(n-1)^{st}$ Catalan number [2]. In this paper we count the number of admissible sequences for all serial rings. We adopt the convention that $\binom{s}{t} = 0$ for all integers s < t and for all s < 0 or t < 0. Furthermore, we will refer to various combinatorial identities and have collected them in the appendix.

2. Counting Admissible Sequences.

<u>Definition 2.1</u>. Let i, j, k be positive integers and δ denote the Kronecker delta. Define $a_{i,j}^k$ as follows:

- a) For all $i, k \ge 1, a_{i,1}^k = 0$.
- b) For all $k \ge 1$ and $j \ge 2$, $a_{1,j}^k = \delta_{j,k}$.
- c) For all $k \ge 1$ and $i, j \ge 2, a_{i,j}^k = \sum_{l \ge j-1} a_{i-1,l}^k$.

We note that each of the sums in part c) above is finite by the following lemma.

Lemma 2.2. For all $i, k \ge 1$ and for all $j \ge 0$, $a_{i,i+k+j}^k = 0$.

<u>Proof.</u> We induct on *i*. For i = 1, we have

$$a_{1,k+j+1}^k = \delta_{k+j+1,k} = 0$$
 for all $j \ge 0$.

Let i > 1. Then

$$a_{i,i+k+j}^k = \sum_{l \ge (i-1)+k+j} a_{i-1,l}^k$$

and by the induction hypothesis, each term in this summation is zero.

<u>Lemma 2.3</u>. For all $i \ge 1$ and $j, k \ge 2$, $a_{i,j}^k$ equals the number of sequences c_1, c_2, \cdots, c_i with $c_1 = k$ and $c_i = j$ that satisfy (1.1).

<u>Proof.</u> Fix $c_1 = k$ and induct on i. The case i = 1 is trivial, as $c_1 = k$ is the only such sequence and $a_{1,j}^k = \delta_{j,k}$. Let i > 1. Suppose c_1, c_2, \dots, c_i satisfies (1.1) with $c_i = j$. Then clearly c_1, c_2, \dots, c_{i-1} also satisfies (1.1). Conversely, if c_1, c_2, \dots, c_{i-1} satisfies (1.1), then so does $c_1, c_2, \dots, c_i = j$ if and only if $2 \leq j \leq c_{i-1}+1$. Thus, every sequence of length i satisfying (1.1) is obtained from a sequence of length i - 1 satisfying (1.1). In particular, the number of sequences $c_1, c_2, \dots, c_i = j$ satisfying (1.1) is equal to the number of sequences c_1, c_2, \dots, c_{i-1} satisfying (1.1) with $c_{i-1} \geq j - 1$. By induction, the latter number is $\sum_{l \geq j-1} a_{i-1,l}^k$ which by definition is $a_{i,j}^k$.

We next give a closed form of $a_{i,j}^k$.

<u>Lemma 2.4</u>. For all $i, j, k \ge 2$, we have

$$a_{i,j}^{k} = \binom{2i-j+k-3}{i-j+k-1} - \binom{2i-j+k-3}{i+k-2}.$$

<u>Proof.</u> We induct on i. Let i = 2. Then

$$a_{2,j}^{k} = \sum_{l \ge j-1} a_{1,l}^{k} = \sum_{l \ge j-1} \delta_{l,k} = \begin{cases} 1 & \text{if } j \le k+1 \\ 0 & \text{else.} \end{cases}$$

On the other hand,

$$\binom{2i-j+k-3}{i-j+k-1} - \binom{2i-j+k-3}{i+k-2} = \binom{k-j+1}{k-j+1} - \binom{k-j+1}{k}.$$

But since $j \ge 2$, we have that $k - j + 1 \le k - 1 < l$ so that $\binom{k-j+1}{k} = 0$. Furthermore, $\binom{k-j+1}{k-j+1} = 1$ if and only if $j \le k + 1$, and is zero otherwise. Let i > 2. Then by the induction hypothesis,

$$a_{i,j}^{k} = \sum_{l \ge j-1} a_{i-1,l}^{k} = \sum_{l \ge j-1} \binom{2(i-1)-l+k-3}{i-1-l+k-1} - \binom{2(i-1)-l+k-3}{i-1+k-2}$$
$$= \sum_{l \ge j-1} \binom{2i+k-l-5}{i+k-l-2} - \sum_{l \ge j-1} \binom{2i+k-l-5}{i+k-3}.$$

Let A denote the first sum immediately above, and B denote the second sum. Since $i \ge 3$ we have that $2i + k - l - 5 \ge i + k - l - 2$. Furthermore, the last non-zero term in the summation A is when i + k - l - 2 = 0 or l = k + i - 2. We then apply identity (A.1) with s = 2i + k - (j - 1) - 5, t = i + k - (j - 1) - 2 and p = l - (j - 1) to get that

$$A = \sum_{l=j-1}^{i+k-2} \binom{2i+k-l-5}{i+k-l-2}$$
$$= \sum_{p=0}^{i+k-(j-1)-2} \binom{2i+k-5-(j-1)-p}{i+k-2-(j-1)-p}$$
$$= \binom{2i+k-(j-1)-5+1}{i+k-(j-1)-2} = \binom{2i-j+k-3}{i-j+k-1}.$$

Next, we note that the only non-zero terms in the summation B occur when $2i + k - l - 5 \ge i + k - 3$ or $k \le i - 2$, so that

$$B = \sum_{l=j-1}^{i-2} \binom{2i+k-l-5}{i+k-3}.$$

We first consider when $i \leq j$, in which case the summation above is empty. But if $i \leq j$, we also have that 2i - j + k - 3 < i + k - 2 and thus, $\binom{2i-j+k-3}{i+k-2} = 0.$

Next, consider the case when i > j. We then apply identity (A.2) to B with s = 2i + k - (j - 1) - 5, t = i + k - 3 and p = l - (j - 1). Thus, we have

$$B = \sum_{l=j-1}^{i-2} \binom{2i+k-l-5}{i+k-3}$$
$$= \sum_{p=0}^{i-j-1} \binom{2i+k-5-(j-1)-p}{i+k-3}$$
$$= \binom{2i+k-(j-1)-5+1}{i+k-3+1} = \binom{2i-j+k-3}{i+k-2}.$$

Thus, we see that A - B gives the desired result.

The next lemma will be used in section 3.

<u>Lemma 2.5</u>. Let $i \ge 2$. Then for all $r, 1 \le r \le i - 1$,

$$\sum_{l=2}^{i} a_{i-r,i}^{l} = \binom{2i-2r-2}{i-r-1}.$$

<u>Proof.</u> First consider the case when r = i - 1. Then

$$\sum_{l=2}^{i} a_{i-r,i}^{l} = \sum_{l=2}^{i} a_{1,i}^{l} = a_{1,i}^{i} = 1.$$

Conversely,

$$\binom{2i-2r-2}{i-r-1} = \binom{2i-2(i-1)-2}{i-(i-1)-1} = \binom{0}{0} = 1.$$

Let $1 \leq r \leq i-2$. By Lemma 2.4 we have that

$$\sum_{l=2}^{i} a_{i-r,i}^{l} = \sum_{l=2}^{i} \left[\binom{2i-2r-i+l-3}{i-r-i+l-1} - \binom{2i-2r-i+l-3}{i-r+l-2} \right]$$
$$= \sum_{l=2}^{i} \left[\binom{i-2r+l-3}{l-r-1} - \binom{i-2r+l-3}{i-r+l-2} \right].$$

But since $r \ge 1$, we have $i - 2r + l - 3 \le i - r + l - 4 \le i - r + l - 2$ so that all of the terms above of the form $\binom{i-2r+l-3}{i-r+l-2}$ are zero. Furthermore, if l < r + 1, then l - r - 1 < 0 in which case all terms above of the form $\binom{i-2r+l-3}{l-r-1}$ are zero. Therefore, letting p = l - r - 1,

$$\sum_{l=2}^{i} a_{i-r,i}^{l} = \sum_{l=r+1}^{i} \binom{i-2r+l-3}{l-r-1} = \sum_{p=0}^{i-r-1} \binom{i-r-2+p}{p}.$$

Finally, we apply identity (A.1) with s = 2i - 2r - 3 and t = i - r - 1 to get the desired result

$$\sum_{l=2}^{i} a_{i-r,i}^{l} = \sum_{p=0}^{i-r-1} \binom{i-r-2+p}{p} = \binom{2i-2r-2}{i-r-1}.$$

For each $k \geq 2$ and $n \geq 1$, let the set of all admissible sequences c_1, c_2, \dots, c_n with $c_1 = k$ be denoted by σ_n^k . In order to satisfy (1.2) we must have that $c_n \geq c_1 - 1 = k - 1$. Thus,

$$|\sigma_n^k| = \sum_{j \ge k-1} a_{n,j}^k = a_{n+1,k}^k.$$

For each $m \geq 2$ and $n \geq 1$, let $T_{n,m}$ denote the set of all admissible sequences c_1, c_2, \dots, c_n with $2 \leq c_1 \leq m$. Then

$$T_{n,m} = \bigcup_{l=2}^{m} \sigma_n^l$$

and

$$|T_{n,m}| = \left| \bigcup_{l=2}^m \sigma_n^l \right| = \sum_{l=2}^m a_{n+1,l}^l.$$

Corollary 2.6. Let $m \ge 2$ and $n \ge 1$. Then

$$|T_{n,m}| = (m-1)\binom{2n-1}{n} - \sum_{l=2}^{m} \binom{2n-1}{n+l-1}.$$

<u>Proof</u>. Applying Lemma 2.4 we get that

$$\begin{aligned} |T_{n,m}| &= \sum_{l=2}^{m} a_{n+1,l}^{l} \\ &= \sum_{l=2}^{m} \left[\binom{2(n+1)-l+(l-3)}{n+1-l+l-1} - \binom{2(n+1)-l+(l-3)}{n+1+(l-2)} \right] \\ &= \sum_{l=2}^{m} \left[\binom{2n-1}{n} - \binom{2n-1}{n+l-1} \right] \\ &= (m-1)\binom{2n-1}{n} - \sum_{l=2}^{m} \binom{2n-1}{n+l-1}. \end{aligned}$$

Corollary 2.7. Let $m \ge 2$ and $n \ge 1$. Then for $m \ge n$

$$|T_{n,m}| = m \binom{2n-1}{n} - 2^{2n-2}.$$

<u>Proof.</u> Whenever l > n we have that n + l - 1 > 2n - 1 so that $\binom{2n-1}{n+l-1} = 0$. We then apply identity (A.3) to Corollary 2.6 to obtain

$$\begin{aligned} |T_{n,m}| \\ &= (m-1)\binom{2n-1}{n} - \sum_{l=2}^{m} \binom{2n-1}{n+l-1} \\ &= (m-1)\binom{2n-1}{n} - \sum_{l=2}^{n} \binom{2n-1}{n+l-1} \\ &= (m-1)\binom{2n-1}{n} - \left[2^{2n-2} - \binom{2n-1}{n}\right] = m\binom{2n-1}{n} - 2^{2n-2}. \end{aligned}$$

3. Cyclic Permutations. Since the admissible sequence for a serial ring is unique only up to a cyclic permutation, we next consider the equivalence classes of the elements of $T_{n,m}$ under cyclic permutation. Notice that $T_{n,m}$ does not contain all cyclic permutations of its own elements (e.g. $a = m, m+1, \cdots, m+n-1 \in T_{n,m}$ but every non-trivial cyclic permutation of a is not in $T_{n,m}$). Thus, we enlarge $T_{n,m}$ to include these elements as follows:

For $m \geq 2$ and $n \geq 1$, let $C_n = \{\alpha_0, \alpha_1, \cdots, \alpha_{n-1}\}$ denote the cyclic group of order n acting on the set $T_{n,m}$ as follows: Let a = $c_1, c_2, \cdots c_n \in T_{n,m}$, then $\alpha_0(a) = a$ and for $1 \leq i \leq n-1$, $\alpha_i(a) = a$ $c_{i+1}, \cdots , c_n, c_1, \cdots , c_i$. Let $S_{n,m} = \{\alpha_i(a) : a \in T_{n,m}, 0 \le i \le n-1\}.$ Thus, $S_{n,m}$ is the set of all cyclic permutations of the elements of $T_{n,m}$ and $T_{n,m} \subset S_{n,m}$.

Regarding two admissible sequences as equivalent if one is a cyclic permutation of the other, we see that the number of equivalence classes of admissible sequences is just the number of orbits of C_n on $S_{n,m}$. We denote this number of equivalence classes by $O_{n,m}$. We first consider the size of the set $S_{n,m}$. Also, note that if $a = c_1, \dots, c_n \in S_{n,m}$, then $\min\{c_1, \dots, c_n\} \leq m$.

<u>Lemma 3.1</u>. Let $m \ge 2$ and $n \ge 1$. Then

$$|S_{n,m} \setminus T_{n,m}| = \sum_{k=1}^{n-1} \left[k |T_{k,2}| \left(\sum_{i=2}^m a_{n-k,m}^i \right) \right].$$

<u>Proof.</u> Let $a = c_1, \dots, c_n \in T_{n,m}$. Then all cyclic permutations of a are in $T_{n,m}$ if and only if $c_i \leq m$ for all $i, 1 \leq i \leq n$. Thus, there exists a cyclic permutation of a that is not in $T_{n,m}$ if and only if there exists j with $1 \leq j \leq n-1$ such that

- i) $c_i = m$.
- ii) $c_{j+1} = m+1$.
- iii) There exists k with $1 \le k \le n-j$ so that $c_i > m$ for all i with $j+1 \le i \le j+k$.
- iv) $c_{[j+k+1]} \leq m$ (where [p] denotes the least positive residue of p modulo n).

Without loss of generality, we permute a and consider $a' = \alpha_j(a)$, where

- i) $a' = a_1, a_2$ with a_1 a subsequence of length k and a_2 a subsequence of length n k.
- ii) $a_1 = d_1, \dots, d_k$ with all $d_i > m$ and $d_1 = m + 1$.
- iii) $a_2 = d_{k+1}, \dots d_n \in T_{n-k,m}$ and $d_n = m$.
- iv) $1 \le k \le n 1$.

Clearly, there exist k permutations of a' (and hence of a) that are not in $T_{n,m}$, namely $\alpha_i(a')$ for $0 \le i \le k-1$. Moreover, every element of $S_{n,m} \setminus T_{n,m}$ is of the form $\alpha_i(a')$ for some $i, 0 \le i \le k-1$, and for some a' as above. Thus, the number of sequences in $S_{n,m} \setminus T_{n,m}$ is found by multiplying the number of sequences of the form a' by k.

The number of sequences of the form a_2 above is $\sum_{i=2}^{m} a_{n-k,m}^i$. Let U_k be the set of sequences of the form a_1 above. Then there is a bijection $f: T_{k,2} \to U_k$, where $f(d_1, \cdots d_k) = d_1 + m - 1, \cdots, d_k + m - 1$. Thus, $|U_k| = |T_{k,2}|$. Multiplying by the k cyclic permutations of a' that are not in $T_{n,m}$ and summing over all $k, 1 \leq k \leq n - 1$, gives the desired result.

We note that by Corollary 2.6 we have

$$|T_{k,2}| = \binom{2k-1}{k} - \binom{2k-1}{k+1} = \frac{1}{k+1}\binom{2k}{k}$$

which is the k^{th} Catalan number. Applying this to Lemma 3.1 and Corollary 2.6 we have the following corollary.

Corollary 3.2. Let $m \ge 2$ and $n \ge 1$. Then

 $|S_{n,m}| = |T_{n,m}| + |S_{n,m} \setminus T_{n,m}|$

$$=(m-1)\binom{2n-1}{n} - \sum_{k=2}^{m} \binom{2n-1}{n+k-1} + \sum_{k=1}^{n-1} \left[\frac{k}{k+1} \binom{2k}{k} \left(\sum_{i=2}^{m} a_{n-k,m}^{i} \right) \right].$$

We consider the special case when $n = m \ge 2$. Applying Corollary 3.2, Lemma 2.5, and Corollary 2.7, we have the following corollary.

Corollary 3.3. Let $n \ge 2$. Then

$$|S_{n,n}| = n \binom{2n-1}{n} - 2^{2n-2} + \sum_{k=1}^{n-1} \frac{k}{k+1} \binom{2k}{k} \binom{2n-2k-2}{n-k-1}.$$

<u>Lemma 3.4</u>. Let $n \ge 2$. Then

$$|S_{n,n}| = (n-1)\binom{2n-1}{n}.$$

<u>Proof</u>. We first note that

$$\frac{k}{k+1}\binom{2k}{k} = \binom{2k}{k-1}$$

and that

$$\binom{2k}{k} - \binom{2k}{k-1} = \frac{1}{k+1}\binom{2k}{k}.$$

We then apply (A.4) and (A.5) to Corollary 3.3 to obtain

$$\begin{aligned} |S_{n,n}| &= n \binom{2n-1}{n} - 2^{2n-2} + \sum_{k=1}^{n-1} \frac{k}{k+1} \binom{2k}{k} \binom{2n-2k-2}{n-k-1} \\ &= n \binom{2n-1}{n} - \sum_{k=1}^{n-1} \binom{2k}{k} \binom{2(n-k-1)}{n-k-1} + \sum_{k=1}^{n-1} \binom{2k}{k-1} \binom{2(n-k-1)}{n-k-1} \\ &= n \binom{2n-1}{n} - \sum_{k=0}^{n-1} \left[\binom{2k}{k} - \binom{2k}{k-1} \right] \binom{2(n-k-1)}{n-k-1} \\ &= n \binom{2n-1}{n} - \sum_{k=0}^{n-1} \frac{1}{k+1} \binom{2k}{k} \binom{2(n-k-1)}{n-k-1} \\ &= n \binom{2n-1}{n} - \binom{2(n-1)+1}{n-1+1} \\ &= (n-1) \binom{2n-1}{n}. \end{aligned}$$

4. Orbits of $\mathbf{C}_{\mathbf{n}}$ on $\mathbf{S}_{\mathbf{n},\mathbf{m}}$. For each $\alpha \in C_n$, let $fix(\alpha) = \{a \in S_{n,m} : \alpha(a) = a\}$. We note that for the identity α_0 , $fix(\alpha_0) = S_{n,m}$. For $n \ge 1$ and $m \ge 2$, we apply Burnsides Theorem to get

$$O_{n,m} = \frac{1}{|C_n|} \sum_{\alpha \in C_n} fix(\alpha) = \frac{1}{n} \left[|S_{n,m}| + \sum_{\alpha \in C_n \setminus \{\alpha_0\}} |fix(\alpha)| \right].$$
(4.1)

Note that for m = 1, we must include the number of admissible sequences of length n with $c_1 = 1$. In this case, since the rings are indecomposable with a simple projective module, no cyclic permutations are needed, and the number of such sequences is the $(n-1)^{st}$ Catalan number, $b_{n-1} = \frac{1}{n} {2n-2 \choose n-1}$

[2]. Thus, for $n \ge 1$ and $m \ge 2$, the total number of equivalence classes of admissible sequences is

$$b_{n-1} + O_{n,m} = \frac{1}{n} \left[\binom{2n-2}{n-1} + |S_{n,m}| + \sum_{\alpha \in C_n \setminus \{\alpha_0\}} |fix(\alpha)| \right].$$
(4.2)

5. Special Case $\mathbf{n} = \mathbf{m}$ is Prime. We consider the special case when n = m is prime. Then for each $\alpha \in C_n \setminus \{\alpha_0\}$, the only elements of $fix(\alpha)$ are the sequences $k, k, \dots k$ where $2 \leq k \leq n$, so that $|fix(\alpha)| = n - 1$. Applying this together with the Lemma 3.4 and (4.2), we have that the number of equivalence classes of admissible sequences is

$$b_{n-1} + O_{n,m} = \frac{1}{n} \left[\binom{2n-2}{n-1} + (n-1)\binom{2n-1}{n} + (n-1)^2 \right].$$
(5.1)

Simplifying (5.1), we have the following theorem.

<u>Theorem 5.2</u>. Let n be prime. Then the number of equivalence classes of admissible sequences for indecomposable serial rings with n indecomposable projective modules whose minimum composition length is less than or equal to n is

$$\binom{2n-1}{n} + \frac{1}{n} \left[(n-1)^2 - \binom{2n-2}{n} \right].$$

Appendix.

$$\sum_{k=0}^{t} \binom{s-k}{t-k} = \sum_{k=0}^{t} \binom{s-t+k}{k} = \binom{s+1}{t} \text{ for } s \ge t \ge 0. \quad ([3] \text{ pg. 7}) \quad (A.1)$$

$$\sum_{k=0}^{s-t} \binom{s-k}{t} = \binom{s+1}{t+1} \text{ for } s \ge t \ge 0.$$
 ([3] pg. 7) (A.2)

$$\sum_{k=1}^{s} \binom{2s-1}{s+k-1} = 2^{2s-2} \text{ for } s \ge 1.$$
 ([3] pg. 34) (A.3)

$$\sum_{k=0}^{s} \binom{2k}{k} \binom{2(s-k)}{s-k} = 2^{2s} \text{ for } s \ge 0.$$
 ([3] pg. 130) (A.4)

$$\sum_{k=0}^{s} \frac{1}{k+1} \binom{2k}{k} \binom{2(s-k)}{s-k} = \binom{2s+1}{s+1} \text{ for } s \ge 0.$$
 ([3] pg. 120) (A.5)

References

- 1. F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York and Berlin, 2nd ed., 1992.
- 2. J. O. Hanes and D. D. Wick, "The Number of Admissible Sequences for Indecomposable Serial Rings with a Simple Projective Module," *Proceedings of the Louisiana-Mississippi Section of the Mathematical Association of America*, Spring 2000.
- J. Riordan, *Combinatorial Identities*, John Wiley and Sons, Inc., New York, London and Sydney, 1968.

Joshua O. Hanes Department of Mathematics University of Mississippi Oxford, MS 38677 email: jhanes@olemiss.edu

Darren D. Wick Department of Mathematics and Computer Science Ashland University Ashland, OH, 44805 email: dwick@ashland.edu