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THE NUMBER OF ADMISSIBLE SEQUENCES FOR

INDECOMPOSABLE SERIAL RINGS

Joshua O. Hanes and Darren D. Wick

Abstract. We give a formula for the number of admissible sequences

for indecomposable serial rings with n indecomposable projective modules

whose minimum composition length is less than or equal tom. In particular,

if n = m is prime, we show that the number of such admissible sequences

is

(

2n− 1

n

)

+
1

n

[

(n− 1)2 −

(

2n− 2

n

)]

.

1. Introduction. To each indecomposable serial ring (with unity) R

there is associated a set {e1, · · · , en} of basic primitive idempotents and a

set {Re1, Re2, · · · , Ren} of pairwise non-isomorphic indecomposable projec-

tive left R-modules, each having a unique composition series. Denoting the

composition lengths of Rei by ci = c(Rei), then the sequence c1, c2, · · · , cn

is called an admissible sequence for R, and satisfies the following inequalities

[1]:

2 ≤ cl ≤cl−1 + 1 for l = 2, · · · , n. (1.1)

c1 ≤ cn + 1. (1.2)

The admissible sequence for a serial ring is unique, except for cyclic per-

mutation of the indices. We have shown that if R has a simple projective

module, then the number of possible admissible sequences of length n is

bn−1, the (n− 1)st Catalan number [2]. In this paper we count the number

of admissible sequences for all serial rings. We adopt the convention that
(

s
t

)

= 0 for all integers s < t and for all s < 0 or t < 0. Furthermore, we

will refer to various combinatorial identities and have collected them in the

appendix.

2. Counting Admissible Sequences.

Definition 2.1. Let i, j, k be positive integers and δ denote the Kro-

necker delta. Define aki,j as follows:
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a) For all i, k ≥ 1, aki,1 = 0.

b) For all k ≥ 1 and j ≥ 2, ak1,j = δj,k.

c) For all k ≥ 1 and i, j ≥ 2, aki,j =
∑

l≥j−1 a
k
i−1,l.

We note that each of the sums in part c) above is finite by the following

lemma.

Lemma 2.2. For all i, k ≥ 1 and for all j ≥ 0, aki,i+k+j = 0.

Proof. We induct on i. For i = 1, we have

ak1,k+j+1 = δk+j+1,k = 0 for all j ≥ 0.

Let i > 1. Then

aki,i+k+j =
∑

l≥(i−1)+k+j

aki−1,l

and by the induction hypothesis, each term in this summation is zero.

Lemma 2.3. For all i ≥ 1 and j, k ≥ 2, aki,j equals the number of

sequences c1, c2, · · · , ci with c1 = k and ci = j that satisfy (1.1).

Proof. Fix c1 = k and induct on i. The case i = 1 is trivial, as c1 = k

is the only such sequence and ak1,j = δj,k. Let i > 1. Suppose c1, c2, · · · , ci

satisfies (1.1) with ci = j. Then clearly c1, c2, · · · , ci−1 also satisfies (1.1).

Conversely, if c1, c2, · · · , ci−1 satisfies (1.1), then so does c1, c2, · · · , ci = j if

and only if 2 ≤ j ≤ ci−1+1. Thus, every sequence of length i satisfying (1.1)

is obtained from a sequence of length i − 1 satisfying (1.1). In particular,

the number of sequences c1, c2, · · · , ci = j satisfying (1.1) is equal to the

number of sequences c1, c2, · · · , ci−1 satisfying (1.1) with ci−1 ≥ j − 1. By

induction, the latter number is
∑

l≥j−1 a
k
i−1,l which by definition is aki,j .

We next give a closed form of aki,j .

Lemma 2.4. For all i, j, k ≥ 2, we have

aki,j =

(

2i− j + k − 3

i− j + k − 1

)

−

(

2i− j + k − 3

i+ k − 2

)

.

Proof. We induct on i. Let i = 2. Then

ak2,j =
∑

l≥j−1

ak1,l =
∑

l≥j−1

δl,k =

{

1 if j ≤ k + 1

0 else.
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On the other hand,

(

2i− j + k − 3

i− j + k − 1

)

−

(

2i− j + k − 3

i+ k − 2

)

=

(

k − j + 1

k − j + 1

)

−

(

k − j + 1

k

)

.

But since j ≥ 2, we have that k − j + 1 ≤ k − 1 < l so that
(

k−j+1
k

)

= 0.

Furthermore,
(

k−j+1
k−j+1

)

= 1 if and only if j ≤ k + 1, and is zero otherwise.

Let i > 2. Then by the induction hypothesis,

aki,j =
∑

l≥j−1

aki−1,l =
∑

l≥j−1

(

2(i− 1)− l + k − 3

i− 1− l + k − 1

)

−

(

2(i− 1)− l + k − 3

i− 1 + k − 2

)

=
∑

l≥j−1

(

2i+ k − l− 5

i + k − l − 2

)

−
∑

l≥j−1

(

2i+ k − l − 5

i+ k − 3

)

.

Let A denote the first sum immediately above, and B denote the second

sum. Since i ≥ 3 we have that 2i+ k − l − 5 ≥ i+ k − l− 2. Furthermore,

the last non-zero term in the summation A is when i + k − l − 2 = 0 or

l = k + i − 2. We then apply identity (A.1) with s = 2i + k − (j − 1)− 5,

t = i+ k − (j − 1)− 2 and p = l − (j − 1) to get that

A =

i+k−2
∑

l=j−1

(

2i+ k − l− 5

i+ k − l − 2

)

=

i+k−(j−1)−2
∑

p=0

(

2i+ k − 5− (j − 1)− p

i+ k − 2− (j − 1)− p

)

=

(

2i+ k − (j − 1)− 5 + 1

i+ k − (j − 1)− 2

)

=

(

2i− j + k − 3

i− j + k − 1

)

.

Next, we note that the only non-zero terms in the summation B occur when

2i+ k − l − 5 ≥ i+ k − 3 or k ≤ i− 2, so that

B =

i−2
∑

l=j−1

(

2i+ k − l − 5

i+ k − 3

)

.
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We first consider when i ≤ j, in which case the summation above is empty.

But if i ≤ j, we also have that 2i − j + k − 3 < i + k − 2 and thus,
(

2i−j+k−3
i+k−2

)

= 0.

Next, consider the case when i > j. We then apply identity (A.2) to B

with s = 2i + k − (j − 1) − 5, t = i + k − 3 and p = l − (j − 1). Thus, we

have

B =

i−2
∑

l=j−1

(

2i+ k − l − 5

i+ k − 3

)

=

i−j−1
∑

p=0

(

2i+ k − 5− (j − 1)− p

i+ k − 3

)

=

(

2i+ k − (j − 1)− 5 + 1

i+ k − 3 + 1

)

=

(

2i− j + k − 3

i+ k − 2

)

.

Thus, we see that A−B gives the desired result.

The next lemma will be used in section 3.

Lemma 2.5. Let i ≥ 2. Then for all r, 1 ≤ r ≤ i − 1,

i
∑

l=2

ali−r,i =

(

2i− 2r − 2

i− r − 1

)

.

Proof. First consider the case when r = i− 1. Then

i
∑

l=2

ali−r,i =

i
∑

l=2

al1,i = ai1,i = 1.

Conversely,

(

2i− 2r − 2

i− r − 1

)

=

(

2i− 2(i− 1)− 2

i− (i− 1)− 1

)

=

(

0

0

)

= 1.
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Let 1 ≤ r ≤ i− 2. By Lemma 2.4 we have that

i
∑

l=2

ali−r,i =

i
∑

l=2

[(

2i− 2r − i+ l − 3

i− r − i+ l− 1

)

−

(

2i− 2r − i + l− 3

i− r + l − 2

)]

=

i
∑

l=2

[(

i− 2r + l− 3

l − r − 1

)

−

(

i− 2r + l − 3

i− r + l − 2

)]

.

But since r ≥ 1, we have i − 2r + l − 3 ≤ i − r + l − 4 ≤ i − r + l − 2 so

that all of the terms above of the form
(

i−2r+l−3
i−r+l−2

)

are zero. Furthermore,

if l < r + 1, then l − r − 1 < 0 in which case all terms above of the form
(

i−2r+l−3
l−r−1

)

are zero. Therefore, letting p = l − r − 1,

i
∑

l=2

ali−r,i =

i
∑

l=r+1

(

i− 2r + l − 3

l − r − 1

)

=

i−r−1
∑

p=0

(

i− r − 2 + p

p

)

.

Finally, we apply identity (A.1) with s = 2i − 2r − 3 and t = i − r − 1 to

get the desired result

i
∑

l=2

ali−r,i =

i−r−1
∑

p=0

(

i− r − 2 + p

p

)

=

(

2i− 2r − 2

i− r − 1

)

.

For each k ≥ 2 and n ≥ 1, let the set of all admissible sequences

c1, c2, · · · , cn with c1 = k be denoted by σk
n. In order to satisfy (1.2)

we must have that cn ≥ c1 − 1 = k − 1. Thus,

|σk
n| =

∑

j≥k−1

akn,j = akn+1,k.

For each m ≥ 2 and n ≥ 1, let Tn,m denote the set of all admissible

sequences c1, c2, · · · , cn with 2 ≤ c1 ≤ m. Then

Tn,m =

m
⋃

l=2

σl
n
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and

|Tn,m| =

∣

∣

∣

∣

m
⋃

l=2

σl
n

∣

∣

∣

∣

=
m
∑

l=2

aln+1,l.

Corollary 2.6. Let m ≥ 2 and n ≥ 1. Then

|Tn,m| = (m− 1)

(

2n− 1

n

)

−

m
∑

l=2

(

2n− 1

n+ l − 1

)

.

Proof. Applying Lemma 2.4 we get that

|Tn,m| =

m
∑

l=2

aln+1,l

=
m
∑

l=2

[(

2(n+ 1)− l+ (l − 3)

n+ 1− l + l − 1

)

−

(

2(n+ 1)− l + (l − 3)

n+ 1 + (l − 2)

)]

=

m
∑

l=2

[(

2n− 1

n

)

−

(

2n− 1

n+ l − 1

)]

= (m− 1)

(

2n− 1

n

)

−

m
∑

l=2

(

2n− 1

n+ l − 1

)

.

Corollary 2.7. Let m ≥ 2 and n ≥ 1. Then for m ≥ n

|Tn,m| = m

(

2n− 1

n

)

− 22n−2.
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Proof. Whenever l > n we have that n + l − 1 > 2n − 1 so that
(

2n−1
n+l−1

)

= 0. We then apply identity (A.3) to Corollary 2.6 to obtain

|Tn,m|

= (m− 1)

(

2n− 1

n

)

−

m
∑

l=2

(

2n− 1

n+ l − 1

)

= (m− 1)

(

2n− 1

n

)

−

n
∑

l=2

(

2n− 1

n+ l − 1

)

= (m− 1)

(

2n− 1

n

)

−
[

22n−2 −

(

2n− 1

n

)

]

= m

(

2n− 1

n

)

− 22n−2.

3. Cyclic Permutations. Since the admissible sequence for a serial

ring is unique only up to a cyclic permutation, we next consider the equiv-

alence classes of the elements of Tn,m under cyclic permutation. Notice

that Tn,m does not contain all cyclic permutations of its own elements (e.g.

a = m,m+1, · · · ,m+n−1 ∈ Tn,m but every non-trivial cyclic permutation

of a is not in Tn,m). Thus, we enlarge Tn,m to include these elements as

follows:

For m ≥ 2 and n ≥ 1, let Cn = {α0, α1, · · · , αn−1} denote the

cyclic group of order n acting on the set Tn,m as follows: Let a =

c1, c2, · · · cn ∈ Tn,m, then α0(a) = a and for 1 ≤ i ≤ n − 1, αi(a) =

ci+1, · · · cn, c1, · · · ci. Let Sn,m = {αi(a) : a ∈ Tn,m, 0 ≤ i ≤ n − 1}.

Thus, Sn,m is the set of all cyclic permutations of the elements of Tn,m

and Tn,m ⊂ Sn,m.

Regarding two admissible sequences as equivalent if one is a cyclic permuta-

tion of the other, we see that the number of equivalence classes of admissible

sequences is just the number of orbits of Cn on Sn,m. We denote this num-

ber of equivalence classes by On,m. We first consider the size of the set

Sn,m. Also, note that if a = c1, · · · cn ∈ Sn,m, then min{c1, · · · cn} ≤ m.

Lemma 3.1. Let m ≥ 2 and n ≥ 1. Then

|Sn,m \ Tn,m| =

n−1
∑

k=1

[

k|Tk,2|
(

m
∑

i=2

ain−k,m

)

]

.
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Proof. Let a = c1, · · · , cn ∈ Tn,m. Then all cyclic permutations of a

are in Tn,m if and only if ci ≤ m for all i, 1 ≤ i ≤ n. Thus, there exists a

cyclic permutation of a that is not in Tn,m if and only if there exists j with

1 ≤ j ≤ n− 1 such that

i) cj = m.

ii) cj+1 = m+ 1.

iii) There exists k with 1 ≤ k ≤ n − j so that ci > m for all i with

j + 1 ≤ i ≤ j + k.

iv) c[j+k+1] ≤ m (where [p] denotes the least positive residue of p modulo

n).

Without loss of generality, we permute a and consider a′ = αj(a), where

i) a′ = a1, a2 with a1 a subsequence of length k and a2 a subsequence of

length n− k.

ii) a1 = d1, · · · , dk with all di > m and d1 = m+ 1.

iii) a2 = dk+1, · · · dn ∈ Tn−k,m and dn = m.

iv) 1 ≤ k ≤ n− 1.

Clearly, there exist k permutations of a′ (and hence of a) that are not

in Tn,m, namely αi(a
′) for 0 ≤ i ≤ k − 1. Moreover, every element of

Sn,m \ Tn,m is of the form αi(a
′) for some i, 0 ≤ i ≤ k − 1, and for some

a′ as above. Thus, the number of sequences in Sn,m \ Tn,m is found by

multiplying the number of sequences of the form a′ by k.

The number of sequences of the form a2 above is
∑m

i=2 a
i
n−k,m. Let Uk

be the set of sequences of the form a1 above. Then there is a bijection

f :Tk,2 → Uk, where f(d1, · · · dk) = d1 + m − 1, · · · , dk + m − 1. Thus,

|Uk| = |Tk,2|. Multiplying by the k cyclic permutations of a′ that are not

in Tn,m and summing over all k, 1 ≤ k ≤ n− 1, gives the desired result.

We note that by Corollary 2.6 we have

|Tk,2| =

(

2k − 1

k

)

−

(

2k − 1

k + 1

)

=
1

k + 1

(

2k

k

)

which is the kth Catalan number. Applying this to Lemma 3.1 and Corol-

lary 2.6 we have the following corollary.
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Corollary 3.2. Let m ≥ 2 and n ≥ 1. Then

|Sn,m| =|Tn,m|+ |Sn,m \ Tn,m|

=(m− 1)

(

2n− 1

n

)

−

m
∑

k=2

(

2n− 1

n+ k − 1

)

+

n−1
∑

k=1

[

k

k + 1

(

2k

k

)

(

m
∑

i=2

ain−k,m

)

]

.

We consider the special case when n = m ≥ 2. Applying Corollary

3.2, Lemma 2.5, and Corollary 2.7, we have the following corollary.

Corollary 3.3. Let n ≥ 2. Then

|Sn,n| = n

(

2n− 1

n

)

− 22n−2 +

n−1
∑

k=1

k

k + 1

(

2k

k

)(

2n− 2k − 2

n− k − 1

)

.

Lemma 3.4. Let n ≥ 2. Then

|Sn,n| = (n− 1)

(

2n− 1

n

)

.

Proof. We first note that

k

k + 1

(

2k

k

)

=

(

2k

k − 1

)

and that

(

2k

k

)

−

(

2k

k − 1

)

=
1

k + 1

(

2k

k

)

.



VOLUME 18, NUMBER 2, 2006 115

We then apply (A.4) and (A.5) to Corollary 3.3 to obtain

|Sn,n| = n

(

2n− 1

n

)

− 22n−2 +

n−1
∑

k=1

k

k + 1

(

2k

k

)(

2n− 2k − 2

n− k − 1

)

= n

(

2n− 1

n

)

−

n−1
∑

k=1

(

2k

k

)(

2(n− k − 1)

n− k − 1

)

+

n−1
∑

k=1

(

2k

k − 1

)(

2(n− k − 1)

n− k − 1

)

= n

(

2n− 1

n

)

−

n−1
∑

k=0

[(

2k

k

)

−

(

2k

k − 1

)](

2(n− k − 1)

n− k − 1

)

= n

(

2n− 1

n

)

−

n−1
∑

k=0

1

k + 1

(

2k

k

)(

2(n− k − 1)

n− k − 1

)

= n

(

2n− 1

n

)

−

(

2(n− 1) + 1

n− 1 + 1

)

= (n− 1)

(

2n− 1

n

)

.

4. Orbits of Cn on Sn,m. For each α ∈ Cn, let fix(α) = {a ∈ Sn,m :

α(a) = a}. We note that for the identity α0, fix(α0) = Sn,m. For n ≥ 1

and m ≥ 2, we apply Burnsides Theorem to get

On,m =
1

|Cn|

∑

α∈Cn

fix(α) =
1

n

[

|Sn,m|+
∑

α∈Cn\{α0}

|fix(α)|

]

. (4.1)

Note that form = 1, we must include the number of admissible sequences of

length n with c1 = 1. In this case, since the rings are indecomposable with

a simple projective module, no cyclic permutations are needed, and the

number of such sequences is the (n−1)st Catalan number, bn−1 = 1
n

(

2n−2
n−1

)
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[2]. Thus, for n ≥ 1 and m ≥ 2, the total number of equivalence classes of

admissible sequences is

bn−1 +On,m =
1

n

[(

2n− 2

n− 1

)

+ |Sn,m|+
∑

α∈Cn\{α0}

|fix(α)|

]

. (4.2)

5. Special Case n = m is Prime. We consider the special case when

n = m is prime. Then for each α ∈ Cn \ {α0}, the only elements of fix(α)

are the sequences k, k, · · · k where 2 ≤ k ≤ n, so that |fix(α)| = n − 1.

Applying this together with the Lemma 3.4 and (4.2), we have that the

number of equivalence classes of admissible sequences is

bn−1 +On,m =
1

n

[(

2n− 2

n− 1

)

+ (n− 1)

(

2n− 1

n

)

+ (n− 1)2
]

. (5.1)

Simplifying (5.1), we have the following theorem.

Theorem 5.2. Let n be prime. Then the number of equivalence classes

of admissible sequences for indecomposable serial rings with n indecompos-

able projective modules whose minimum composition length is less than or

equal to n is

(

2n− 1

n

)

+
1

n

[

(n− 1)2 −

(

2n− 2

n

)]

.

Appendix.

t
∑

k=0

(

s− k

t− k

)

=

t
∑

k=0

(

s− t+ k

k

)

=

(

s+ 1

t

)

for s ≥ t ≥ 0. ([3] pg. 7) (A.1)

s−t
∑

k=0

(

s− k

t

)

=

(

s+ 1

t+ 1

)

for s ≥ t ≥ 0. ([3] pg. 7) (A.2)
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s
∑

k=1

(

2s− 1

s+ k − 1

)

= 22s−2 for s ≥ 1. ([3] pg. 34) (A.3)

s
∑

k=0

(

2k

k

)(

2(s− k)

s− k

)

= 22s for s ≥ 0. ([3] pg. 130) (A.4)

s
∑

k=0

1

k + 1

(

2k

k

)(

2(s− k)

s− k

)

=

(

2s+ 1

s+ 1

)

for s ≥ 0. ([3] pg. 120) (A.5)
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