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STRUCTURING UNDERGRADUATE RESEARCH

IN ABSTRACT ALGEBRA

Keith E. Mellinger and Hisaya Tsutsui

Abstract. We discuss some general methods for structuring under-
graduate research projects. As an example, we follow a project which oc-
curred between the two authors who at one time had the student-advisor
relationship. We discuss realistic goals of undergraduate research, reflect
on the methods and outcomes of our project, and suggest ideas for future
work with undergraduates.

1. Introduction. Directing undergraduate research can be quite
challenging for many working college professors. There is the common dif-
ficulty of proposing problems suitable for an undergraduate student. On
one hand, you do not want the problem to be too difficult. On the other
hand, the problem should be just slightly out-of-reach of the student’s cur-
rent knowledge. This will force the student to spend time learning new
material while working in the direction of a solution. These factors make
the project feel like research to the undergraduate student, the primary
purpose of undergraduate research in our opinion, even though the results
may not be worthy of a highly regarded research journal.

As the authors of this article, we are in a rather unique position to
comment on the experience of undergraduate research. While both of us
hold a Ph.D. in mathematics and teach at liberal arts colleges, this was not
always the case. We once had the student-advisor relationship. In 1995,
the first author completed an undergraduate research project in abstract
algebra under the advisement of the second author. We would like to take
this opportunity to reflect on the project, share the results, and offer some
suggestions for future projects.

The topic of our project focused on the structure of rings, a topic that
is not normally discussed during an introductory abstract algebra course at
the undergraduate level. The approach was to take a rather basic concept
which arises in any undergraduate curriculum and to get the student to
experience a generalization of that concept. In our case, the basic concept
was that of the transpose of a matrix: an involution (*) of a ring R is
an anti-automorphism of order two; that is, (*) is a group automorphism
of order two of the additive group (R,+) satisfying (r1r2)

∗ = r∗2r
∗

1 for all
ri ∈ R. The transpose on matrices can be easily seen as an example of an
involution on the ring of matrices.

We will now share our own experiences during this undergraduate re-
search project. It is our sincere hope that this will give a guideline for a
successful supervision of undergraduate research particularly for those who
have just started their career in teaching at liberal arts colleges such as
ours.
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2. Getting Started: Definitions and Basic Results. The first
step in our project was to introduce the generalization including the setting
in which the generalization resides. In our case, matrices were generalized to
a general non-commutative ring and the following definition was introduced
by the student.

Definition 2.1. A mapping ∗:R → R of a ring R onto itself is called an
involution if for all a, b ∈ R,

1. (a∗)∗ = a
2. (a+ b)∗ = a∗ + b∗

3. (ab)∗ = b∗a∗.

We will denote the ring R with involution (*) by R∗ hereafter. Also,
for a subset L of R∗, the set {r∗ : r ∈ L} will be denoted by L∗. An ideal
I of R∗ is called a (*)-ideal if I∗ ⊆ I, and a (*)-ideal P is called (*)-prime
provided that IJ ⊆ P implies either I ⊆ P or J ⊆ P for (*)-ideals I and
J . Also, a proper (*)-ideal M is said to be (*)-maximal if there does not
exist a (*)-ideal N such that M 6⊆ N .

After a reading course in abstract algebra, Keith (the student) was
able to find some basic properties of rings with involution as listed below.

1. If I is a (∗)-ideal, then I∗ = I.
2. A power and an intersection of (∗)-ideals is a (∗)-ideal.
3. 1 = 1∗

4. If I is an ideal of R, then so is I∗, and hence II∗, I + I∗, and I ∩ I∗

are all (∗)-ideals.

During the reading course, these properties were given to Keith as
open-ended questions. For example, the last statement was initially asked
as “If I is an ideal of R, what can you say about II∗, I + I∗, and I ∩ I∗?”
This, we believe, is a great way for a student to start digesting the new
definitions. In addition, Keith quickly realized that there is a fundamental
difference between doing homework problems and writing a paper. For
example, you need to determine what to prove before trying to prove it.
These properties were essential tools to prove many of the propositions and
theorems that appear in the project.

3. I Need an Example! For a student, working in this degree of
abstraction can be both enlightening and extremely frustrating. The time
will come where one must see examples. Through some discussions, Hisa
(the advisor) was eventually able to convince Keith that examples exist.
Moreover, different kinds of examples were discussed.

The motivating example of an involution is the transpose on matrices
which is inextricably bound in with the structure of matrices.

Keith: “Are there any other examples of a ring with involution?”

Hisa: “Think about the identity map defined on a ring.”
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For an adviser, working with a student on an undergraduate research
project can be both enlightening and extremely frustrating as well. How
much should we give away and how much should we keep to ourselves? One
thing that worked out well in our case was not to disprove the student’s
wrong conclusion, but to let the student naturally realize it.

Keith: “I see, it looks like we can define an involution on any ring.”

Hisa: “I am not sure if I would go that far . . . what if a ring is non-
commutative? Let’s see . . . ”

Hisa then suggested that Keith try to strengthen his conclusion by first
considering defining an involution on some non-commutative ring of small
order, hoping that Keith would eventually come up with a counter example.
Keith struggled for a few days trying to prove his claim but then was able
to verify that no matter how the (*) operation is defined on the ring shown
below, the last involution property will not be satisfied. Therefore, he found
a ring in which an involution cannot be defined.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 0 0 0

Notice, however, that no identity is present in the ring. Is it then
possible to construct a ring with identity in which no involution can be
defined? Soon Keith recalled the procedure which constructs a ring with
identity from a ring without identity, a procedure mentioned in his ab-
stract algebra course. With the previously defined ring as a starter, Keith
considered a set of ordered pairs whose first component comes from the
ring previously defined and whose second component comes from the two-
element ring Z2. Addition is performed by coordinates, and multiplication
is defined by (x1, y1)(x2, y2) = (x1x2 + y1x2 + x1y2, y1y2) for all x1, x2 ∈ R
and y1, y2 ∈ Z2. This set forms a ring with identity (0,1). Keith was then
able to show that no involution can be defined on this ring.

Just as Keith had shown that there exist rings in which no involution
can be defined, Hisa suggested the construction of a ring with involution
from any given ring, with or without identity. For such a task, take any ring
R and redefine its multiplication as follows: for any r1, r2 ∈ R, r1 ⋆ r2 =
r2 · r1. The new operation ⋆ simply reverses the operands in the original
operation. With the same additive structure, it is obvious that R with this
new operation forms a ring. We will refer to a ring R with this redefined
multiplication as Rop (the opposite ring). For any ring R, it is known
and easy to see that the new ring R ⊕ Rop, with pairwise addition and
multiplication, can always have an involution.
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We are finally ready for Keith to try his own hand at research. We
cannot emphasize enough that the work up to this point takes a good deal of
time. Students should plan to spend half of the semester or more getting to
this point. The student should learn to determine some basic results, form
examples, and formulate his/her own conjectures. Only after this amount of
exposure to the new concept can an undergraduate student begin thinking
about his or her own theorems.

4. Main Results. A natural starting place is the concept of a simple
ring. Recall that a ring is called simple if it does not contain any non-zero
proper ideals, and so a ring with involution having no non-zero (*)-ideals
will be called a (*)-simple ring. Moreover, rings with involution (*) in which
every (*)-ideal is (*)-prime will be referred to as fully (*)-prime rings. Rings
with involution (*) in which every non-zero (*)-ideal is (*)-maximal will be
called fully (*)-maximal rings. Keith’s first result was to generalize the
following well-known characterization of simple rings and (*)-simple rings.
This is, of course, a perfect place to start since it builds on the student’s
prior knowledge.

Proposition 4.1. The ring R is a simple ring if and only if R ⊕ Rop is
(*)-simple.

Coming up with the statements of new theorems is very likely out-of-
reach for most undergraduates. This is where the advisor should step in
and suggest a possible result.

Hisa: “Say, I wonder how R, being fully prime, will affect R⊕Rop? Maybe
you should think about it?”

Keith: “Oh, ok Dr. T. I’ll work on that tonight while I’m watching Sein-
feld.”

. . . a few days later . . .

Keith: “Sorry to let you down, Dr. T, but I couldn’t figure anything out.”

Hisa: “Well, at least you thought about it. How about this: maybe if R
is fully prime, then R ⊕ Rop will be fully (*)-prime. See if you can prove
it tonight while you watch Melrose Place. If not, maybe you can find a
counter example to show that it’s false.”

And two weeks later, Keith arrives with the following proposition.

Proposition 4.2. The ring R is fully prime if and only if R ⊕ Rop is
fully (*)-prime.

Since the purpose of this article is not to show you the proofs to some
theorems in ring theory, we are omitting the proofs. The student might
not (in fact, probably will not) write the proof perfectly the first time. As
long as the undergraduate student is thinking and trying to write some
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arguments, the advisor should be happy. Certainly, we rarely (if ever) had
the experience of Keith writing an entire proof with no help from Hisa.

Keith considered fully (*)-maximal rings at the end. From our inde-
pendent reading course, Keith knew that every maximal ideal is prime. An
almost identical proof of the statement yields the following (*) analog.

Proposition 4.3. Let R be a ring with involution (*). Any (*)-maximal
ideal M of R is a (*)-prime ideal.

So, notice that the results are very natural generalizations of work
already known to the student. Hisa has simply taken known theorems and
asked Keith to apply them to a new structure, a ring with involution. This
process can work very well if the advisor can conjure up an appropriate
object to generalize. Our final discussion was about the structure of rings
with involution, all of whose (*)-ideals are (*)-maximal. Such a ring has a
quite limited structure as the following theorem shows.

Theorem 4.4. A fully (*)-maximal ring R has at most two proper (*)-
ideals.

This theorem eventually led Keith to a final nice result, Theorem 4.5.
We include Keith’s proof for good measure. Notice how the student has
pulled together the idea of rings with involution (the theme of the project)
along with some results from the reading courses (Chinese Remainder The-
orem, and the Fundamental Theorem of Ring Homomorphisms). This, we
believe, is a wonderful way to end the experience.

Theorem 4.5. Let R be a fully (*)-maximal ring. Then R is either:

1. a (*)-simple ring,
2. a ring with exactly one non-zero proper (*)-ideal, or
3. the direct sum of two (*)-simple rings.

Proof. We have already shown that a fully (*)-maximal ring has at
most two (*)-ideals. All that is left to show is the claim that a ring with
exactly two non-zero (*)-maximal ideals is the direct sum of two (*)-simple
rings. Let M1 and M2 be distinct non-zero (*)-maximal ideals. Since
M1 + M2 is a (*)-ideal, we must have M1 + M2 = R. By the Chinese
Remainder Theorem, the map R → R/M1 ⊕R/M2 is onto. But the kernel
of this map is M1 ∩ M2 which is zero, since M1 ∩ M2 is a (*)-ideal of
the ring. Hence, by the Fundamental Theorem of Ring Homomorphisms,
R ≃ R/M1 ⊕R/M2.

5. Wrapping Things Up. A good undergraduate project should
have the student believing that there’s still more work to be done. The
student should be able to see ahead slightly and understand how to start
asking his or her own questions about what to study next. Of course,
the advisor might coerce this, but students should certainly not feel that
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the research is done. The results obtained here naturally lead us to a few
questions.

• Is a (*)-simple ring a simple ring?
• Is a (*)-maximal ideal within a fully (*)-maximal ring maximal?

After the project and final paper were completed, Keith was able to
find some answers to these questions. To answer the first, consider the
ring Z3 ⊕Z3 with exchange involution. This ring has two distinct non-zero
ideals, namely Z3 ⊕ {0} and {0} ⊕ Z3, neither of which is a (*)-ideal. So,
(*)-simple does not imply simple.

For the answer to the second question, consider the lattice of ideals
for the ring Z4 ⊕Z4 with typical exchange involution. Notice that the ring
has just one non-zero (*)-ideal, namely Z2 ⊕ Z2 = {(a, b) : a, b ∈ {0, 2}}.
But this ideal is not maximal, since it is contained within Z4 ⊕ Z2. Hence,
(*)-maximal does not imply maximal. The one case from our proposition
which is left for further study is the structure of a ring with involution
having just one non-zero (*)-ideal.

6. Creating New Projects. At the time when Keith was working
on this project, Hisa was working on his own research on a related subject.
He, therefore, had several ideas and minor results which best served as tools
for Keith’s project rather than as a weak publication of his own. We think
most new Ph.D.s have similar ideas and minor results that may be useful
for conducting undergraduate research. This might require some thought,
but this is to be expected. Our experience has been that you cannot find
an undergraduate research problem easily.

Our approach in this project was to generalize. Hisa took a basic con-
cept in abstract algebra and asked Keith to generalize it (slightly) and sort
of “reprove” the known theorems. You should also think about moving in
the other direction. In our own research, we often look for general state-
ments like “For any field F , . . . .” But perhaps a more restrictive statement
will be accessible to an undergraduate. For instance, what if F were re-
stricted to the field of real numbers, or only rationals, or even a finite field
of prime order? Perhaps this specification will lead to a more accessible
problem.

We cannot overemphasize that the value and motivation of undergrad-
uate research lies more heavily on the “research experience” than any “new”
results. A student who is interested in working on a project is likely a good
and motivated student. Eventually, he or she will find his or her own solid
area to pursue under the guidance of a graduate adviser. The idea is to
project the guidance that you had or wished to have had during your grad-
uate research days to the undergraduate student in the time prior to his or
her entry into the graduate research world.

We shall now list a few other projects within the area of abstract al-
gebra for the reference of interested readers. We believe this approach
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(generalizing a concept) works successfully in many other areas of mathe-
matics. The topics listed below are fairly well-known, but students might
need to “research” a bit to come across the right articles to reference. As
it was in our case, we believe these topics will strengthen a student’s solid
understanding of basic linear algebra material. They also let the student
rethink about the oft-neglected relation between abstract and linear algebra
courses. It is very possible that a student may even find a small new result
although we do not think that is a priority in undergraduate research.

1. Consider the ideal structure of the ring of linear transformations of a
vector space over a field as a generalization of the ring of matrices over
a field.

2. Generalize involution further to a map of anti-homomorphisms of order
2 and investigate the structure of rings where the map can be defined.

3. A combination of (1) and (2): study the fundamental property known
as “Invariant Base Number.” A field has this property (every base
of a vector space has the same cardinality). The ring in (1) gives an
example of a ring without the property, while the ring in (2) with an
additional condition guarantees an invariant base number.

It is our hope that we have given at least some suggestion on how to
proceed with your own undergraduate research projects in abstract alge-
bra. Undergraduate research has become quite the buzz word these days in
institutions striving toward quality undergraduate education, but there is
little training on how to proceed with such projects. To date, we have both
supervised several projects and are finally starting to feel knowledgeable
about the process. We hope that other teachers of undergraduate mathe-
matics can benefit from our experience and ideas. Let us know how you
make out.
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