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GROUP OF ISOMETRIES OF THE CC-PLANE

R. Kaya, Ö. Gelişgen, S. Ekmekçi, and A. Bayar

Abstract. In this work, it is shown that the group of isometries of the

plane with respect to the Chinese Checkers metric is the semi-direct product

of the Dihedral group D8 and T (2), where D8 is the (Euclidean) symmetry

group of the regular octagon and T (2) is the group of all translations of the

plane. Furthermore, some properties of the CC-plane are studied and the

area formula for a triangle is given.

1. Introduction. One of the basic problems in geometric investi-

gations for a given space S with a metric d is to describe the group G

of isometries. If S is the Euclidean plane with the usual metric, then it

is well-known that G consists of all translations, rotations, reflections and

glide reflections of the plane. It is known that for the Euclidean plane,

G = E(2) is the semi-direct product of its two subgroups O(2) (the orthog-

onal group) and T (2), where O(2) is the symmetry group of the unit circle

and T (2) (the translation group) consists of all translations of the plane [2,

6, 8]. The group of isometries of the taxicab plane has been given in [7].

For the general problem stated above we use the analytical plane R2

endowed with the Chinese Checker Metric dc defined by

dc(X,Y ) = max {|x1 − x2| , |y1 − y2|}+(
√
2− 1)min {|x1 − x2| , |y1 − y2|} ,

where X = (x1, y1) and Y = (x2, y2). We use R2
c = (R2, dc) for the Chinese

Checkers plane (CC-plane). E. F. Krause [4] asked the question of how to

develop a metric which would be similar to the movement made by playing

Chinese Checkers. Later, the above metric was developed by G. Chen [1].

According to the definition of dc-metric, the shortest path between the

points A and B is the union of a vertical or a horizontal line segment and

a line segment with the slope 1 or -1, as shown in Figure 1. Thus, the

shortest distance dc from A to B is the sum of the Euclidean lengths of

these two line segments.
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If the slope of the segment AB is −1, 0, 1, ∞, then the dc-distance is

equal to the Euclidean distance between A and B. For the sake of brevity

of notation we denote the slope of the vertical lines by ∞.

The unit circle in R2
c is the set of points (x, y) in the plane which satisfy

the equation

max {|x| , |y|}+ (
√
2− 1)min {|x| , |y|} = 1.

This is an octagon with vertices

A1 (1, 0) , A2

(
1√
2
,
1√
2

)
, A3 (0, 1) , A4

(−1√
2
,
1√
2

)
,

A5 (−1, 0) , A6

(−1√
2
,
−1√
2

)
, A7 (0,−1) , A8

(
1√
2
,
−1√
2

)

as shown in Figure 2.
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In the remaining part of this work, we will study the isometries of R2
c ,

determine its group of isometries, and give some properties of R2
c .

2. Isometries of the CC-Plane (R2

c
). Since an isometry of a plane

is defined to be a transformation which preserves the distances in the plane,

an isometry of R2
c is therefore an isometry of the real plane with respect to

the dc metric.

Proposition 1. Every Euclidean translation is an isometry of R2
c .

Proof. Let TA:R
2
c → R2

c such that TA(X) = A+X be the translation

in the real plane R2, where A = (a1, a2) and X = (x1, y1) ∈ R2
c . For

X = (x1, y1) and Y = (x2, y2) ∈ R2
c , we have

dc (TA(X), TA(Y )) = max {|(a1 + x1)− (a1 + x2)| , |(a2 + y1)− (a2 + y2)|}

+
(√

2− 1
)
min {|(a1 + x1)− (a1 + x2)| , |(a2+y1)− (a2 + y2)|}

= max {|x1 − x2| , |y1 − y2|}+
(√

2− 1
)
min {|x1 − x2| , |y1 − y2|}

= dc (X,Y ) .

That is, TA is an isometry.
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Since CC-plane geometry is the study of Euclidean points, lines and

angles in R2
c , we use the following definition and lemma to find the reflec-

tions.

Definition. Let P and l be a point and a line in R2
c , and let Q denote

the point on l such that PQ is perpendicular to l. If P ′ is a point on the

opposite side of the line l with respect to P such that dc (P,Q) = dc (P
′, Q),

then P ′ is called the reflection of P .

Notice that it is enough to consider the lines passing through the origin

as axes of reflections because of Proposition 1.

The following lemma will be useful in determining reflections in R2
c .

Lemma 2. Let l be the line through the points A = (x1, y1) and B =

(x2, y2) in the analytical plane and dE denote the Euclidean metric. If l

has slope m, then

dc(A,B) =
M√

m2 + 1
dE(A,B), where M =

{
1 + (

√
2− 1) |m| if |m| ≤ 1

|m|+
√
2− 1 if |m| ≥ 1.

Proof. If l is parallel to the x-axis or y-axis, then m = 0 and

M/
√
m2 + 1 = 1 or m → ∞ and limm→∞(M/

√
m2 + 1) = 1. Then,

dc(A,B) = dE(A,B) in both of the cases above. If l is not parallel to

the x-axis and y-axis, then x1 6= x2 and y1 6= y2, m = (y1 − y2)/(x1 − x2),

where m is the slope of l, and

dc(A,B) = max {|x1 − x2| , |y1 − y2|}+ (
√
2− 1)min {|x1 − x2| , |y1 − y2|}

=

{ |x1 − x2|
(
1 + (

√
2− 1) |m|

)
if |m| ≤ 1

|x1 − x2|
(
|m|+

√
2− 1

)
if |m| ≥ 1.

Similarly,

dE(A,B) = |x1 − x2|
√
1 +m2 for all m ∈ R

and consequently the given equality is valid.

The above proposition says that dc-distance along any line is some

positive constant multiple of Euclidean distance along the same line. Let

ρ(m) denote this constant, that is, ρ(m) = M/
√
m2 + 1. For the graph of

ρ see Figure 3.
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Furthermore, one can immediately obtain the following corollaries.

Corollary 3. If A, B, and X are any three collinear points in R2, then

dE(X,A) = dE(X,B) if and only if dc(X,A) = dc(X,B).

Corollary 4. If A, B, and X are any three distinct collinear points in

the real plane, then

dc(X,A)/dc(X,B) = dE(X,A)/dE(X,B).

That is, the ratios of the Euclidean and dc-distances along a line are the

same.

Notice that the latter corollary gives us the validity of the Theorems

of Menelaus and Ceva in R2
c . The following proposition determines the

reflections which preserves distance in R2
c .

Proposition 5. A reflection about the line y = mx in R2
c is an isometry

if and only if

m ∈
{
0,±1,±(

√
2− 1),±(

√
2 + 1),∞

}
.

Proof. Consider the Euclidean reflection ϕ about the line y = mx,

ϕ(P ) = ϕ(x, y) = P ′ = (x′, y′) =

(
(1−m2)x+ 2my

1 +m2
,
2mx+ (−1 +m2)y

1 +m2

)
.
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If Q = PP ′ ∩ {(x, y) : y = mx}, then dE(P,Q) = dE(P
′, Q) implies

dc(P,Q) = dc(P
′, Q) by Corollary 3. That is, P ′ is a dc-reflection of P .

Using Proposition 1, one can say that ϕ is an isometry of R2
c if and only if

dc(O,P ) = dc(O,P ′). We claim that

dc(O,P ) = dc(O,P ′) if and only if m ∈
{
0,±1,±(

√
2− 1),±(

√
2 + 1),∞

}
.

If dc(O,P ) = dc(O,P ′), then ρ(m1) = ρ(m2) = k, where k is a constant and

m1 and m2 are the slopes of the lines OP and OP ′, respectively. Further-

more, if P is on the line y = mx, then P = P ′, m1 = m2 = m, ρ(m) = k,

and the derivative ρ′(m) = 0 for k 6= 1. Thus,

(1 +m2)3/2.ρ′(m) =





−1− (
√
2− 1)m if −∞ < m < −1

−m−
√
2 + 1 if −1 < m < 0

−m+
√
2− 1 if 0 < m < 1

1− (
√
2− 1)m if 1 < m < ∞

and ρ′(m) = 0 gives us

m = −(
√
2 + 1) = tg(5π/8) if −∞ < m < −1

m = −(
√
2− 1) = tg(7π/8) if − 1 < m < 0

m =
√
2− 1 = tg(π/8) if 0 < m < 1

m =
√
2 + 1 = tg(3π/8) if 1 < m < ∞.

In particular, if ρ(m) = k = 1, then m ∈ {0,±1,∞} as seen in Figure 3.

Conversely, if m1 and m2 are the slopes of the lines OP and OP ′,

respectively, where P ′ = ϕ(P ), then

dE(O,P ) = dE(O,P ′)

dc(O,P ) = ρ(m1)dE(O,P )

dc(O,P ′) = ρ(m2)dE(O,P ′) = ρ(m2)dE(O,P ).
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Now it is easy to check that ρ(m1) = ρ(m2) for all of the possible cases in

the following table, which implies dc(O,P ) = dc(O,P ′).

m 0
√
2− 1 1

√
2 + 1

m2 −m1
1−m1

1+m1

1
m1

m1+1
m1−1

m ∞ −
√
2− 1 −1 −

√
2 + 1

m2 −m1
1−m1

1+m1

1
m1

m1+1
m1−1

The above proposition shows that not all reflections preserve dc-

distances. The set of isometric reflections Sc consist of the eight Euclidean

reflections about the lines in{
x = 0, y = 0, y = ∓x, y = ∓

(√
2− 1

)
x, y = ∓

(√
2 + 1

)
x
}
.

Proposition 6. There are only eight Euclidean rotations that preserve

dc-distances. In other words, the set of isometric rotations in R2
c is

Rc =
{
rθ | θ = k

π

4
, k = 0, 1, . . . , 7

}
.

Proof. In order to find the isometric rotations in R2
c , it is sufficient to

determine the rotations which preserve the lengths of the sides of the dc-

unit circle. Consider the points A1 = (1, 0) and A2 = (
√
2
2
,
√
2
2
) on the unit

circle of R2
c . Rotating A1 and A2 by an angle θ, we get

rθ(A1) = (cos θ, sin θ)

rθ(A2) = (1/
√
2)(cos θ − sin θ, sin θ + cos θ).

Clearly, dc(A1, A2) = 2
√
2 − 2. If rθ preserves dc-distance, we must look

for θ which implies dc(rθ(A1), rθ(A2)) = 2
√
2− 2. Thus,

dc(rθ(A1), rθ(A2))

= max
{∣∣∣ 2−

√
2

2
cos θ +

√
2
2

sin θ
∣∣∣ ,
∣∣∣2−

√
2

2
sin θ −

√
2
2

cos θ
∣∣∣
}

+ (
√
2− 1)min

{∣∣∣ 2−
√
2

2
cos θ +

√
2
2

sin θ
∣∣∣ ,

∣∣∣ 2−
√
2

2
sin θ −

√
2
2

cos θ
∣∣∣
}

= 2
√
2− 2.
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Let α = 2−
√
2

2
cos θ+

√
2
2

sin θ and β = 2−
√
2

2
sin θ−

√
2
2

cos θ. Now, consider

the following cases.

i) Let |α| ≥ |β|.

If α ≥ 0 and β ≤ 0, then cos θ + sin θ =
√
2 which implies θ = π/4.

If α ≥ 0 and β ≥ 0, then sin θ = 1 which implies θ = π/2.

If α ≤ 0 and β ≥ 0, then cos θ + sin θ =
√
2 which implies θ = 5π/4.

If α ≤ 0 and β ≤ 0, then sin θ = −1 which implies θ = 3π/2.

ii) Let |α| < |β|.

Similar to case (i), we gets θ = 3π/4, θ = 0, θ = π, and θ = 7π/4.

From (i) and (ii), θ ∈ {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}. Fi-
nally, let m and m′ denote the slopes of the lines OX and OX ′, respec-

tively, where X ′ = rθ(X). As in Proposition 5, it can easily be check that

ρ(m) = ρ(m′) for all of the possible cases in the following table, which im-

plies dc(O,X) = dc(O,X ′). That is, every rθ ∈ Rc preserves all dc-distances

by Proposition 1.

θ 0 π/4 π/2 3π/4
m′ m 1+m

1−m − 1
m

m−1
m+1

θ π 5π/4 3π/2 7π/4
m′ m 1+m

1−m − 1
m

m−1
m+1

Thus, we have the orthogonal group, consisting of eight reflections and

eight rotations

Oc(2) = Rc ∪ Sc,

which gives us the Dihedral group D8, that is, the Euclidean symmetry

group of the regular octagon. Now, let us show that all isometries of R2
c

are in T (2).Oc(2).

Definition. Let A = (a1, a2) and B = (b1, b2) be two points in R2
c . The

minimum distance set of A and B is defined by

{X | dc(A,X) + dc(B,X) = dc(A,B)}
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and denoted by ÂB (Fig. 4).

Let mAB denote the slope of the line through the points A and B. If

mAB = 0, ∓1, or the line is vertical, the set ÂB is the line segment joining

A and B, that is, ÂB = AB. We call ÂB the standard parallelogram with

diagonal AB .

Proposition 7. Let φ:R2
c → R2

c be an isometry and let ÂB be the

standard parallelogram. Then

φ(ÂB) = ̂φ(A)φ(B).

Proof. Let Y ∈ φ(ÂB). Then the following statements are equivalent.

Y ∈ φ(ÂB)

there exists an X ∈ ÂB such that Y = φ(X)

dc(A,X) + dc(X,B) = dc(A,B)

dc(φ(A), φ(X)) + dc(φ(X), φ(B)) = dc(φ(A), φ(B))

Y = φ(X) ∈ ̂φ(A)φ(B).
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Corollary 8. Let φ:R2
c → R2

c be an isometry and let ÂB be the stan-

dard parallelogram. Then φ maps vertices to vertices and preserves the

lengths of sides of ÂB.

Proposition 9. Let f :R2
c → R2

c be an isometry such that f(O) = O.

Then f ∈ Rc or f ∈ Sc.

Proof. Let

A1 = (1, 0), A2 = ( 1√
2
, 1√

2
) , D = (1 + 1√

2
, 1√

2
)

and consider the standard parallelogram ÔD.

It is clear from Figure 5 that f(A1) ∈ AiAi+1. Since f is an isometry

by Proposition 6, f(A1) and f(A2) must be the vertices of the standard

parallelogram Ôf(D). Also, when the slope of the parallel sides of a stan-

dard parallelogram is 0 or ∞, the slope of the other parallel sides is 1 or

−1. Therefore, if f(A1) ∈ AiAi+1, then f(A1) = Ai or f(A1) = Ai+1.

Similarly, f(A2) = Ai or f(A2) = Ai+1.

Case 1: If f(A1) = A1, then f(A2) = A2 or f(A2) = A8.

Subcase 1.1: If f(A2) = A2, then f is a rotation with θ = 0.

Subcase 1.2: If f(A2) = A8, then f is a reflection about the line y = 0.

Case 2: If f(A1) = A2, then f(A2) = A1 or f(A2) = A3.

Subcase 2.1: If f(A2) = A1, then f is a reflection about the line

y = (
√
2− 1)x.
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Subcase 2.2: If f(A2) = A3, then f is a rotation with θ = π/4.

Case 3: If f(A1) = A3, then f(A2) = A2 or f(A2) = A4.

Subcase 3.1: If f(A2) = A2, then f is a reflection about the line y = x.

Subcase 3.2: If f(A2) = A4, then f is a rotation with θ = π/2.

Case 4: If f(A1) = A4, then f(A2) = A5 or f(A2) = A3.

Subcase 4.1: If f(A2) = A5, then f is a rotation with θ = 3π/4.

Subcase 4.2: If f(A2) = A3, then f is a reflection about the line

y = (
√
2 + 1)x.

Case 5: If f(A1) = A5, then f(A2) = A4 or f(A2) = A6.

Subcase 5.1: If f(A2) = A4, then f is a reflection about the line x = 0.

Subcase 5.2: If f(A2) = A6, then f is a rotation with θ = π.

Case 6: If f(A1) = A6, then f(A2) = A5 or f(A2) = A7.

Subcase 6.1: If f(A2) = A5, then f is a reflection about the line

y=−(
√
2+1)x.

Subcase 6.2: If f(A2) = A7, then f is a rotation with θ = 5π/4.

Case 7: If f(A1) = A7, then f(A2) = A6 or f(A2) = A8.

Subcase 7.1: If f(A2) = A6, then f is a reflection about the line

y = −x.

Subcase 7.2: If f(A2) = A8, then f is a rotation with θ = 3π/2.

Case 8: If f(A1) = A8, then f(A2) = A1 or f(A2) = A7.

Subcase 8.1: If f(A2) = A1, then f is a rotation with θ = 7π/4.

Subcase 8.2: If f(A2) = A7, then f is a reflection about the line

y = (1 −
√
2)x.

Theorem 10. Let f :R2
c → R2

c be an isometry. Then there exists a

unique TA ∈ T (2) and g ∈ Oc(2) such that f = TA ◦ g.

Proof. Let f(O) = A where A = (a1, a2). Define g = T−A ◦ f . We

know that g is an isometry and g(O) = O. Thus, g ∈ Oc(2) and f = TA ◦ g
by Proposition 9. The proof of uniqueness is trivial.

3. Area Formula For CC-Triangles. The area of a triangle in the

Euclidean plane can be computed by the formula A = (1/2)bh, which is

not, in general, valid in R2
c . Area formulas of a taxicab triangle are given

in [3] and [5]. If one knows the dc-lengths bc and hc of the base and the

corresponding altitude, respectively, of a triangle in R2
c , how can its area

be computed? The following theorem answers the question and gives the

Euclidean area of a triangle in terms of dc-distances.
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Theorem 11. Let bc and hc denote the dc-lengths of a given side (base)

and the corresponding altitude, respectively, of a triangle in R2
c . If the slope

of base is m, then the area of the triangle can be computed by

A =
1 +m2

2M2
bchc, where M =

{
1 + (

√
2− 1) |m| if |m| ≤ 1

|m|+
√
2− 1 if |m| ≥ 1.

Proof. If b, h, and bc, hc are the Euclidean and dc-lengths of the base

and the corresponding altitude of a triangle, and if the slope of the base is

m, then the slope of altitude is (−1/m) and

b =
1

ρ(m)
bc =

(1 +m2)1/2

M
bc, h =

1

ρ(−m−1)
hc =

(1 +m2)1/2

M
hc

by Lemma 2. Using these values of b and h in the area formula one obtains

S =
1 +m2

2M2
bchc.

Clearly, the above result can be easily extended to the areas of polygons.
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Department of Mathematics
Faculty of Science and Arts
University of Eskişehir Osmangazi
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